TU Darmstadt / ULB / TUbiblio

Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications

Scheibel, Franziska ; Gottschall, Tino ; Taubel, Andreas ; Fries, Maximilian ; Skokov, Konstantin P. ; Terwey, Alexandra ; Keune, Werner ; Ollefs, Katharina ; Wende, Heiko ; Farle, Michael ; Acet, Mehmet ; Gutfleisch, Oliver ; Gruner, Markus E. (2020)
Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications.
In: Energy Technology, 2018, 6 (8)
doi: 10.25534/tuprints-00013405
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Scheibel, Franziska ; Gottschall, Tino ; Taubel, Andreas ; Fries, Maximilian ; Skokov, Konstantin P. ; Terwey, Alexandra ; Keune, Werner ; Ollefs, Katharina ; Wende, Heiko ; Farle, Michael ; Acet, Mehmet ; Gutfleisch, Oliver ; Gruner, Markus E.
Art des Eintrags: Zweitveröffentlichung
Titel: Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications
Sprache: Englisch
Publikationsjahr: 4 September 2020
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energy Technology
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 8
DOI: 10.25534/tuprints-00013405
URL / URN: https://tuprints.ulb.tu-darmstadt.de/13405
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Magnetic refrigeration relies on a substantial entropy change in a magnetocaloric material when a magnetic field is applied. Such entropy changes are present at first‐order magnetostructural transitions around a specific temperature at which the applied magnetic field induces a magnetostructural phase transition and causes a conventional or inverse magnetocaloric effect (MCE). First‐order magnetostructural transitions show large effects, but involve transitional hysteresis, which is a loss source that hinders the reversibility of the adiabatic temperature change ΔTad. However, reversibility is required for the efficient operation of the heat pump. Thus, it is the mastering of that hysteresis that is the key challenge to advance magnetocaloric materials. We review the origin of the large MCE and of the hysteresis in the most promising first‐order magnetocaloric materials such as Ni–Mn‐based Heusler alloys, FeRh, La(FeSi)13‐based compounds, Mn3GaC antiperovskites, and Fe2P compounds. We discuss the microscopic contributions of the entropy change, the magnetic interactions, the effect of hysteresis on the reversible MCE, and the size‐ and time‐dependence of the MCE at magnetostructural transitions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-134051
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Experimentelle Physik kondensierter Materie
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Theoretische Festkörperphysik
Hinterlegungsdatum: 19 Jun 2024 14:56
Letzte Änderung: 07 Aug 2024 11:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen