TU Darmstadt / ULB / TUbiblio

Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4

Snyder, Rose M. ; Juelsholt, Mikkel ; Kalha, Curran ; Holm, Jason ; Mansfield, Elisabeth ; Lee, Tien Lin ; Thakur, Pardeep K. ; Riaz, Aysha A. ; Moss, Benjamin ; Regoutz, Anna ; Birkel, Christina S. (2023)
Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4.
In: ACS Nano, 17 (13)
doi: 10.1021/acsnano.3c03395
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While “211” MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the “514” MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm–2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Snyder, Rose M. ; Juelsholt, Mikkel ; Kalha, Curran ; Holm, Jason ; Mansfield, Elisabeth ; Lee, Tien Lin ; Thakur, Pardeep K. ; Riaz, Aysha A. ; Moss, Benjamin ; Regoutz, Anna ; Birkel, Christina S.
Art des Eintrags: Bibliographie
Titel: Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4
Sprache: Englisch
Publikationsjahr: 2023
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Nano
Jahrgang/Volume einer Zeitschrift: 17
(Heft-)Nummer: 13
DOI: 10.1021/acsnano.3c03395
Kurzbeschreibung (Abstract):

MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While “211” MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the “514” MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm–2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.

Freie Schlagworte: (Mo0.75V0.25)5AlC4, (Mo0.75V0.25)5C4,MAX phase, MXene, STEM-in-SEM, electrocatalysis, synchrotron XRD
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
Hinterlegungsdatum: 19 Jun 2024 05:17
Letzte Änderung: 19 Jun 2024 09:32
PPN: 519244087
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen