Snyder, Rose M. ; Juelsholt, Mikkel ; Kalha, Curran ; Holm, Jason ; Mansfield, Elisabeth ; Lee, Tien Lin ; Thakur, Pardeep K. ; Riaz, Aysha A. ; Moss, Benjamin ; Regoutz, Anna ; Birkel, Christina S. (2023)
Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4.
In: ACS Nano, 17 (13)
doi: 10.1021/acsnano.3c03395
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While “211” MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the “514” MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm–2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Snyder, Rose M. ; Juelsholt, Mikkel ; Kalha, Curran ; Holm, Jason ; Mansfield, Elisabeth ; Lee, Tien Lin ; Thakur, Pardeep K. ; Riaz, Aysha A. ; Moss, Benjamin ; Regoutz, Anna ; Birkel, Christina S. |
Art des Eintrags: | Bibliographie |
Titel: | Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4 |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Verlag: | American Chemical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | ACS Nano |
Jahrgang/Volume einer Zeitschrift: | 17 |
(Heft-)Nummer: | 13 |
DOI: | 10.1021/acsnano.3c03395 |
Kurzbeschreibung (Abstract): | MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While “211” MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the “514” MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm–2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst. |
Freie Schlagworte: | (Mo0.75V0.25)5AlC4, (Mo0.75V0.25)5C4,MAX phase, MXene, STEM-in-SEM, electrocatalysis, synchrotron XRD |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut |
Hinterlegungsdatum: | 19 Jun 2024 05:17 |
Letzte Änderung: | 19 Jun 2024 09:32 |
PPN: | 519244087 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |