TU Darmstadt / ULB / TUbiblio

Structure–property relations of silicon oxycarbides studied using a machine learning interatomic potential

Leimeroth, Niklas ; Rohrer, Jochen ; Albe, Karsten (2024)
Structure–property relations of silicon oxycarbides studied using a machine learning interatomic potential.
In: Journal of the American Ceramic Society, 107 (10)
doi: 10.1111/jace.19932
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Silicon oxycarbides show outstanding versatility due to their highly tunable composition and microstructure. Consequently, a key challenge is a thorough knowledge of structure–property relations in the system. In this work, we fit an atomic cluster expansion potential to a set of actively learned density-functional theory training data spanning a wide configurational space. We demonstrate the ability of the potential to produce realistic amorphous structures and rationalize the formation of different morphologies of the turbostratic free carbon phase. Finally, we relate the materials stiffness to its composition and microstructure, finding a delicate dependence on Si-C bonds that contradicts commonly assumed relations to the free carbon phase.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Leimeroth, Niklas ; Rohrer, Jochen ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Structure–property relations of silicon oxycarbides studied using a machine learning interatomic potential
Sprache: Englisch
Publikationsjahr: 6 Mai 2024
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 107
(Heft-)Nummer: 10
DOI: 10.1111/jace.19932
Zugehörige Links:
Kurzbeschreibung (Abstract):

Silicon oxycarbides show outstanding versatility due to their highly tunable composition and microstructure. Consequently, a key challenge is a thorough knowledge of structure–property relations in the system. In this work, we fit an atomic cluster expansion potential to a set of actively learned density-functional theory training data spanning a wide configurational space. We demonstrate the ability of the potential to produce realistic amorphous structures and rationalize the formation of different morphologies of the turbostratic free carbon phase. Finally, we relate the materials stiffness to its composition and microstructure, finding a delicate dependence on Si-C bonds that contradicts commonly assumed relations to the free carbon phase.

Freie Schlagworte: atomistic simulation, silicon oxycarbide, structure, Young-s modulus
Zusätzliche Informationen:

N. L. acknowledges Linus C. Erhard for helpful discussions. N. L. received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 405621137 and from the German Federal Ministry of Education and Research (BMBF) under project HeNa (FKZ 03XP0390A). J. R. acknowledges funding from the European Unions Horizon 2020 research and innovation program under Grant Agreement no. 963542. K. A. acknowledges funding by the DFG under project number 413956820

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 19 Jun 2024 08:52
Letzte Änderung: 20 Nov 2024 11:05
PPN: 51925869X
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen