TU Darmstadt / ULB / TUbiblio

Elastic Weight Removal for Faithful and Abstractive Dialogue Generation

Daheim, Nico ; Dziri, Nouha ; Sachan, Mrinmaya ; Gurevych, Iryna ; Ponti, Edoardo (2024)
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation.
2024 Conference of the North American Chapter of the Association for Computational Linguistics. Mexico City, Mexico (17-21.06.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Generating factual responses is a crucial requirement for dialogue systems. To promotemore factual responses, a common strategyis to ground their responses in relevant documents that inform response generation. However, common dialogue models still often hallucinate information that was not containedin these documents and is therefore unfaithful. In this work, we propose to alleviate suchhallucinations by ‘subtracting’ the parametersof a model trained to hallucinate from a dialogue response generation model in order to‘negate’ the contribution of such hallucinatedexamples from it. Extensive automatic and human evaluation shows favourable results whencompared to state-of-the-art methods that combine the distributions of multiple models, suchas DExperts (Liu et al., 2021), and others thatchange the training procedure, such as Quark(Lu et al., 2022a). Finally, we show how wecan not only reduce hallucinations but also discourage extractive responses, which are oftena consequence of reducing hallucinations byencouraging copy-pasting of document spans.We publicly release our code for reproducibilityand facilitating further research.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Daheim, Nico ; Dziri, Nouha ; Sachan, Mrinmaya ; Gurevych, Iryna ; Ponti, Edoardo
Art des Eintrags: Bibliographie
Titel: Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Sprache: Englisch
Publikationsjahr: Juni 2024
Ort: Mexico City, Mexico
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Veranstaltungstitel: 2024 Conference of the North American Chapter of the Association for Computational Linguistics
Veranstaltungsort: Mexico City, Mexico
Veranstaltungsdatum: 17-21.06.2024
URL / URN: https://aclanthology.org/2024.naacl-long.393/
Kurzbeschreibung (Abstract):

Generating factual responses is a crucial requirement for dialogue systems. To promotemore factual responses, a common strategyis to ground their responses in relevant documents that inform response generation. However, common dialogue models still often hallucinate information that was not containedin these documents and is therefore unfaithful. In this work, we propose to alleviate suchhallucinations by ‘subtracting’ the parametersof a model trained to hallucinate from a dialogue response generation model in order to‘negate’ the contribution of such hallucinatedexamples from it. Extensive automatic and human evaluation shows favourable results whencompared to state-of-the-art methods that combine the distributions of multiple models, suchas DExperts (Liu et al., 2021), and others thatchange the training procedure, such as Quark(Lu et al., 2022a). Finally, we show how wecan not only reduce hallucinations but also discourage extractive responses, which are oftena consequence of reducing hallucinations byencouraging copy-pasting of document spans.We publicly release our code for reproducibilityand facilitating further research.

Freie Schlagworte: UKP_p_seditrah_factcheck
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 24 Jun 2024 12:36
Letzte Änderung: 05 Aug 2024 09:39
PPN: 52032904X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen