Geng, Jiahui ; Cai, Fengyu ; Wang, Yuxia ; Koeppl, Heinz ; Nakov, Preslav ; Gurevych, Iryna (2024)
A Survey of Confidence Estimation and Calibration in Large Language Models.
2024 Conference of the North American Chapter of the Association for Computational Linguistics. Mexico City, Mexico (17-21.06.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and to outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Geng, Jiahui ; Cai, Fengyu ; Wang, Yuxia ; Koeppl, Heinz ; Nakov, Preslav ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | A Survey of Confidence Estimation and Calibration in Large Language Models |
Sprache: | Englisch |
Publikationsjahr: | Juni 2024 |
Ort: | Mexico City, Mexico |
Verlag: | Association for Computational Linguistics |
Buchtitel: | Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) |
Veranstaltungstitel: | 2024 Conference of the North American Chapter of the Association for Computational Linguistics |
Veranstaltungsort: | Mexico City, Mexico |
Veranstaltungsdatum: | 17-21.06.2024 |
URL / URN: | https://aclanthology.org/2024.naacl-long.366/ |
Kurzbeschreibung (Abstract): | Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and to outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work. |
Freie Schlagworte: | UKP_p_crisp_senpai, UKP_p_seditrah_QABioLit |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 24 Jun 2024 12:19 |
Letzte Änderung: | 05 Aug 2024 08:34 |
PPN: | 520325605 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |