TU Darmstadt / ULB / TUbiblio

How are Prompts Different in Terms of Sensitivity?

Lu, Sheng ; Hendrik, Schuff ; Gurevych, Iryna (2024)
How are Prompts Different in Terms of Sensitivity?
2024 Conference of the North American Chapter of the Association for Computational Linguistics. Mexico City, Mexico (17-21.06.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In-context learning (ICL) has become one of the most popular learning paradigms. While there is a growing body of literature focusing on prompt engineering, there is a lack of systematic analysis comparing the effects of prompt techniques across different models and tasks. To address this, we present a comprehensive prompt analysis based on sensitivity. Our analysis reveals that sensitivity is an unsupervised proxy for model performance, as it exhibits a strong negative correlation with accuracy. We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output, resulting in different levels of sensitivity. Furthermore, we introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding. We show that this approach is particularly helpful when information in the input is scarce. Our work provides a fresh perspective on the analysis of prompts, and contributes to a better understanding of the mechanism of ICL.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Lu, Sheng ; Hendrik, Schuff ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: How are Prompts Different in Terms of Sensitivity?
Sprache: Englisch
Publikationsjahr: Juni 2024
Ort: Mexico City, Mexico
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Veranstaltungstitel: 2024 Conference of the North American Chapter of the Association for Computational Linguistics
Veranstaltungsort: Mexico City, Mexico
Veranstaltungsdatum: 17-21.06.2024
URL / URN: https://aclanthology.org/2024.naacl-long.325
Kurzbeschreibung (Abstract):

In-context learning (ICL) has become one of the most popular learning paradigms. While there is a growing body of literature focusing on prompt engineering, there is a lack of systematic analysis comparing the effects of prompt techniques across different models and tasks. To address this, we present a comprehensive prompt analysis based on sensitivity. Our analysis reveals that sensitivity is an unsupervised proxy for model performance, as it exhibits a strong negative correlation with accuracy. We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output, resulting in different levels of sensitivity. Furthermore, we introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding. We show that this approach is particularly helpful when information in the input is scarce. Our work provides a fresh perspective on the analysis of prompts, and contributes to a better understanding of the mechanism of ICL.

Freie Schlagworte: UKP_p_crisp_senpai
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 24 Jun 2024 11:31
Letzte Änderung: 02 Aug 2024 09:20
PPN: 520293916
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen