TU Darmstadt / ULB / TUbiblio

Dislocation density-mediated functionality in single-crystal BaTiO3

Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai-Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen (2024)
Dislocation density-mediated functionality in single-crystal BaTiO3.
In: Advanced Science, 11 (31)
doi: 10.1002/advs.202403550
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Unlike metals wheredislocationscarrystrain singularitybut no charge, dislocationsinoxideceramicsare characterized bybotha strain field and a localcharge witha compensating charge envelope. Oxide ceramicswiththeir deliberate engineeringand manipulationarepivotalinnumerousmodern technologies such assemiconductors, superconductors, solar cells, and ferroics.Dislocations facilitateplastic deformationinmetals and leadto a monotonous increase inthe strength ofmetallicmaterialsinaccordance with the widelyrecognized Taylorhardeninglaw.However,achievingthe objective oftailoring the functionality ofoxide ceramicsbydislocation density still remainselusive.Hereastrategytoimprintdislocationswith{100}<100>slip systems and atenfold change in dislocationdensity ofBaTiO3 single crystals usinghigh-temperature uniaxialcompressionare reported.Througha dislocation density-based approach,dielectric permittivity,converse piezoelectriccoefficient, and alternating currentconductivity aretailored, exhibiting apeak atmedium dislocationdensity. Combined with phase-field simulationsand domainwallpotential energy analyses, the dislocation-density-based design inbulk ferroelectricsismechanistically rationalized.These findings mayprovidea new dimensionforemploying plasticstrainengineeringto tune the electrical propertiesofferroics, potentiallypavingthe wayforadvancing dislocationtechnology infunctional ceramics.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai-Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Dislocation density-mediated functionality in single-crystal BaTiO3
Sprache: Englisch
Publikationsjahr: 18 Juni 2024
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 31
DOI: 10.1002/advs.202403550
Zugehörige Links:
Kurzbeschreibung (Abstract):

Unlike metals wheredislocationscarrystrain singularitybut no charge, dislocationsinoxideceramicsare characterized bybotha strain field and a localcharge witha compensating charge envelope. Oxide ceramicswiththeir deliberate engineeringand manipulationarepivotalinnumerousmodern technologies such assemiconductors, superconductors, solar cells, and ferroics.Dislocations facilitateplastic deformationinmetals and leadto a monotonous increase inthe strength ofmetallicmaterialsinaccordance with the widelyrecognized Taylorhardeninglaw.However,achievingthe objective oftailoring the functionality ofoxide ceramicsbydislocation density still remainselusive.Hereastrategytoimprintdislocationswith{100}<100>slip systems and atenfold change in dislocationdensity ofBaTiO3 single crystals usinghigh-temperature uniaxialcompressionare reported.Througha dislocation density-based approach,dielectric permittivity,converse piezoelectriccoefficient, and alternating currentconductivity aretailored, exhibiting apeak atmedium dislocationdensity. Combined with phase-field simulationsand domainwallpotential energy analyses, the dislocation-density-based design inbulk ferroelectricsismechanistically rationalized.These findings mayprovidea new dimensionforemploying plasticstrainengineeringto tune the electrical propertiesofferroics, potentiallypavingthe wayforadvancing dislocationtechnology infunctional ceramics.

ID-Nummer: Artikel-ID: 2403550
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 19 Jun 2024 08:30
Letzte Änderung: 05 Nov 2024 06:46
PPN: 519257456
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen