TU Darmstadt / ULB / TUbiblio

Integrating Crowd-sourced Annotations of Tree Crowns using Markov Random Field and Multispectral Information

Mei, Qipeng ; Steier, Janik ; Iwaszczuk, Dorota (2024)
Integrating Crowd-sourced Annotations of Tree Crowns using Markov Random Field and Multispectral Information.
ISPRS Technical Commission II Symposium 2024. Las Vegas, Nevada, USA (11.06.2024 - 14.06.2024)
doi: 10.5194/isprs-archives-XLVIII-2-2024-257-2024
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Benefiting from advancements in algorithms and computing capabilities, supervised deep learning models offer significant advantages in accurately mapping individual tree canopy cover, which is a fundamental component of forestry management. In contrast to traditional field measurement methods, deep learning models leveraging remote sensing data circumvent access limitations and are more cost-effective. However, the efficiency of models depends on the accuracy of the tree crown annotations, which are often obtained through manual labeling. The intricate features of the tree crown, characterized by irregular contours, overlapping foliage, and frequent shadowing, pose a challenge for annotators. Therefore, this study explores a novel approach that integrates the annotations of multiple annotators for the same region of interest. It further refines the labels by leveraging information extracted from multi-spectral aerial images. This approach aims to reduce annotation inaccuracies caused by personal preference and bias and obtain a more balanced integrated annotation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Mei, Qipeng ; Steier, Janik ; Iwaszczuk, Dorota
Art des Eintrags: Bibliographie
Titel: Integrating Crowd-sourced Annotations of Tree Crowns using Markov Random Field and Multispectral Information
Sprache: Englisch
Publikationsjahr: Juni 2024
Ort: Hannover, Germany
Verlag: Copernicus Publications
Reihe: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Band einer Reihe: 48-2-2024
Kollation: 7 Seiten
Veranstaltungstitel: ISPRS Technical Commission II Symposium 2024
Veranstaltungsort: Las Vegas, Nevada, USA
Veranstaltungsdatum: 11.06.2024 - 14.06.2024
DOI: 10.5194/isprs-archives-XLVIII-2-2024-257-2024
Zugehörige Links:
Kurzbeschreibung (Abstract):

Benefiting from advancements in algorithms and computing capabilities, supervised deep learning models offer significant advantages in accurately mapping individual tree canopy cover, which is a fundamental component of forestry management. In contrast to traditional field measurement methods, deep learning models leveraging remote sensing data circumvent access limitations and are more cost-effective. However, the efficiency of models depends on the accuracy of the tree crown annotations, which are often obtained through manual labeling. The intricate features of the tree crown, characterized by irregular contours, overlapping foliage, and frequent shadowing, pose a challenge for annotators. Therefore, this study explores a novel approach that integrates the annotations of multiple annotators for the same region of interest. It further refines the labels by leveraging information extracted from multi-spectral aerial images. This approach aims to reduce annotation inaccuracies caused by personal preference and bias and obtain a more balanced integrated annotation.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse
Hinterlegungsdatum: 18 Jun 2024 05:43
Letzte Änderung: 01 Jul 2024 08:20
PPN: 519474864
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen