TU Darmstadt / ULB / TUbiblio

Translational antiphase boundaries in NaNbO3 antiferroelectrics

Ding, Hui ; Hadaeghi, Niloofar ; Zhang, Mao-Hua ; Jiang, Tian-Shu ; Zintler, Alexander ; Carstensen, Leif ; Zhang, Yixuan ; Kleebe, Hans-Joachim ; Zhang, Hongbin ; Molina-Luna, Leopoldo (2023)
Translational antiphase boundaries in NaNbO3 antiferroelectrics.
In: ACS Applied Materials & Interfaces, 15 (51)
doi: 10.1021/acsami.3c15141
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Planar defects are known to be of importance in affecting the functional properties of materials. Translational antiphase boundaries (APBs) in particular have attracted considerable attention in perovskite oxides, but little is known in lead-free antiferroelectric oxides that are promising candidates for energy storage applications. Here, we present a study of translational APBs in prototypical antiferroelectric NaNbO3 using aberration-corrected (scanning) transmission electron microscopy (TEM) techniques at different length scales. The translational APBs in NaNbO3 are characterized by a 2-fold-modulated structure, which is antipolar in nature and exhibits a high density, different from the polar nature and lower density in PbZrO3. The high stability of translational APBs against external electric fields and elevated temperatures was revealed using ex situ and in situ TEM experiments and is expected to be associated with their antipolar nature. Density functional theory calculations demonstrate that translational APBs possess only slightly higher free energy than the antiferroelectric and ferroelectric phase energies with differences of 29 and 33 meV/f.u., respectively, justifying their coexistence down to the nanoscale at room temperature. These results provide a detailed atomistic elucidation of translational APBs in NaNbO3 with antipolar character and stability against external stimuli, establishing the basis of defect engineering of antiferroelectrics for energy storage devices.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Ding, Hui ; Hadaeghi, Niloofar ; Zhang, Mao-Hua ; Jiang, Tian-Shu ; Zintler, Alexander ; Carstensen, Leif ; Zhang, Yixuan ; Kleebe, Hans-Joachim ; Zhang, Hongbin ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: Translational antiphase boundaries in NaNbO3 antiferroelectrics
Sprache: Englisch
Publikationsjahr: 2023
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Materials & Interfaces
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 51
DOI: 10.1021/acsami.3c15141
Kurzbeschreibung (Abstract):

Planar defects are known to be of importance in affecting the functional properties of materials. Translational antiphase boundaries (APBs) in particular have attracted considerable attention in perovskite oxides, but little is known in lead-free antiferroelectric oxides that are promising candidates for energy storage applications. Here, we present a study of translational APBs in prototypical antiferroelectric NaNbO3 using aberration-corrected (scanning) transmission electron microscopy (TEM) techniques at different length scales. The translational APBs in NaNbO3 are characterized by a 2-fold-modulated structure, which is antipolar in nature and exhibits a high density, different from the polar nature and lower density in PbZrO3. The high stability of translational APBs against external electric fields and elevated temperatures was revealed using ex situ and in situ TEM experiments and is expected to be associated with their antipolar nature. Density functional theory calculations demonstrate that translational APBs possess only slightly higher free energy than the antiferroelectric and ferroelectric phase energies with differences of 29 and 33 meV/f.u., respectively, justifying their coexistence down to the nanoscale at room temperature. These results provide a detailed atomistic elucidation of translational APBs in NaNbO3 with antipolar character and stability against external stimuli, establishing the basis of defect engineering of antiferroelectrics for energy storage devices.

Zusätzliche Informationen:

The authors are greatly indebted to the LOEWE collaborative project FLAME (Fermi level engineering of antiferroelectric materials for energy storage and insulation systems) supported by the Hessian State Ministry for Higher Education, Research, and the Arts. H.D., T.-S.J., and L.M.-L. acknowledge financial support from the European Research Council’s (ERC) “Horizon 2020” Program under grant no. 805359-FOXON and grant no. 957521-STARE. H.D. thanks Dr. Christian Liebscher for carefully reading the manuscript and providing valuable comments and suggestions during the revision of the manuscript.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
Hinterlegungsdatum: 18 Jun 2024 05:24
Letzte Änderung: 18 Jun 2024 06:56
PPN: 519208684
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen