TU Darmstadt / ULB / TUbiblio

Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates

Wu, Jing ; Zhou, E. ; Huang, An ; Zhang, Hongbin ; Hu, Ming ; Qin, Guangzhao (2024)
Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates.
In: Nature Communications, 15 (1)
doi: 10.1038/s41467-024-46806-7
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W m−1K−1) cooling substrates into the wide-bandgap semiconductor of gallium nitride (GaN) devices has been realized. However, the lack of systematic analysis on the heat transfer across the GaN-BAs interface hampers the practical applications. In this study, by constructing the accurate and high-efficient machine learning interatomic potentials, we perform multiscale simulations of the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m−2K−1 is achieved, which lies in the well-matched lattice vibrations of BAs and GaN. The strong temperature dependence of interfacial thermal conductance is found between 300 to 450 K. Moreover, the competition between grain size and boundary resistance is revealed with size increasing from 1 nm to 1000 μm. Such deep-potential equipped multiscale simulations not only promote the practical applications of BAs cooling substrates in electronics, but also offer approach for designing advanced thermal management systems.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Wu, Jing ; Zhou, E. ; Huang, An ; Zhang, Hongbin ; Hu, Ming ; Qin, Guangzhao
Art des Eintrags: Bibliographie
Titel: Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates
Sprache: Englisch
Publikationsjahr: 25 März 2024
Ort: London
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 1
Kollation: 9 Seiten
DOI: 10.1038/s41467-024-46806-7
Zugehörige Links:
Kurzbeschreibung (Abstract):

High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W m−1K−1) cooling substrates into the wide-bandgap semiconductor of gallium nitride (GaN) devices has been realized. However, the lack of systematic analysis on the heat transfer across the GaN-BAs interface hampers the practical applications. In this study, by constructing the accurate and high-efficient machine learning interatomic potentials, we perform multiscale simulations of the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m−2K−1 is achieved, which lies in the well-matched lattice vibrations of BAs and GaN. The strong temperature dependence of interfacial thermal conductance is found between 300 to 450 K. Moreover, the competition between grain size and boundary resistance is revealed with size increasing from 1 nm to 1000 μm. Such deep-potential equipped multiscale simulations not only promote the practical applications of BAs cooling substrates in electronics, but also offer approach for designing advanced thermal management systems.

ID-Nummer: Artikel-ID: 2540
Zusätzliche Informationen:

An Author Correction to this article was published on 16 April 2024

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 14 Jun 2024 12:23
Letzte Änderung: 14 Jun 2024 13:29
PPN: 519163567
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen