TU Darmstadt / ULB / TUbiblio

Klein Tunneling in β₁₂ Borophene

Lai, Jinhao ; Wang, Lekang ; Li, Fu ; Zhang, Hongbin ; Zhang, Qingtian (2024)
Klein Tunneling in β₁₂ Borophene.
In: Nanomaterials, 14 (9)
doi: 10.3390/nano14090790
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Motivated by the recent observation of Klein tunneling in 8-Pmmn borophene, we delve into the phenomenon in β₁₂ borophene by employing tight-binding approximation theory to establish a theoretical mode. The tight-binding model is a semi-empirical method for establishing the Hamiltonian based on atomic orbitals. A single cell of β₁₂ borophene contains five atoms and multiple central bonds, so it creates the complexity of the tight-binding model Hamiltonian of β₁₂ borophene. We investigate transmission across one potential barrier and two potential barriers by changing the width and height of barriers and the distance between two potential barriers. Regardless of the change in the barrier heights and widths, we find the interface to be perfectly transparent for normal incidence. For other angles of incidence, perfect transmission at certain angles can also be observed. Furthermore, perfect and all-angle transmission across a potential barrier takes place when the incident energy approaches the Dirac point. This is analogous to the “super”, all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier. These findings highlight the significance of our theoretical model in understanding the complex dynamics of Klein tunneling in borophene structures.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lai, Jinhao ; Wang, Lekang ; Li, Fu ; Zhang, Hongbin ; Zhang, Qingtian
Art des Eintrags: Bibliographie
Titel: Klein Tunneling in β₁₂ Borophene
Sprache: Englisch
Publikationsjahr: 2024
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanomaterials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 9
Kollation: 10 Seiten
DOI: 10.3390/nano14090790
Kurzbeschreibung (Abstract):

Motivated by the recent observation of Klein tunneling in 8-Pmmn borophene, we delve into the phenomenon in β₁₂ borophene by employing tight-binding approximation theory to establish a theoretical mode. The tight-binding model is a semi-empirical method for establishing the Hamiltonian based on atomic orbitals. A single cell of β₁₂ borophene contains five atoms and multiple central bonds, so it creates the complexity of the tight-binding model Hamiltonian of β₁₂ borophene. We investigate transmission across one potential barrier and two potential barriers by changing the width and height of barriers and the distance between two potential barriers. Regardless of the change in the barrier heights and widths, we find the interface to be perfectly transparent for normal incidence. For other angles of incidence, perfect transmission at certain angles can also be observed. Furthermore, perfect and all-angle transmission across a potential barrier takes place when the incident energy approaches the Dirac point. This is analogous to the “super”, all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier. These findings highlight the significance of our theoretical model in understanding the complex dynamics of Klein tunneling in borophene structures.

Freie Schlagworte: Klein tunneling; β12 borophene; Dirac fermions
ID-Nummer: Artikel-ID: 790
Zusätzliche Informationen:

This work was funded by the National Natural Science Foundation of China (NSFC, Grant Nos. 11704078), Guangdong University of Technology One-Hundred Young Talents Program (Project No. 220413143).

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 14 Jun 2024 11:03
Letzte Änderung: 14 Jun 2024 13:51
PPN: 519164113
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen