TU Darmstadt / ULB / TUbiblio

RISnet: A Scalable Approach for Reconfigurable Intelligent Surface Optimization with Partial CSI

Peng, Bile ; Besser, Karl-Ludwig ; Raghunath, Ramprasad ; Jamali, Vahid ; Jorswieck, Eduard A. (2024)
RISnet: A Scalable Approach for Reconfigurable Intelligent Surface Optimization with Partial CSI.
IEEE GLOBECOM 2023. Kuala Lumpur, Malaysia (04.12.2023 - 08.12.2023)
doi: 10.1109/GLOBECOM54140.2023.10437049
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The reconfigurable intelligent surface (RIS) is a promising technology that enables wireless communication systems to achieve improved performance by intelligently manipulating wireless channels. In this paper, we consider the sum-rate maximization problem in a downlink multi-user multi-input-single-output (MISO) channel via space-division multiple access (SDMA). Two major challenges of this problem are the high dimensionality due to the large number of RIS elements and the difficulty to obtain the full channel state information (CSI), which is assumed known in many algorithms proposed in the literature. Instead, we propose a hybrid machine learning approach using the weighted minimum mean squared error (WMMSE) precoder at the base station (BS) and a dedicated neural network (NN) architecture, RISnet, for RIS configuration. The RISnet has a good scalability to optimize 1296 RIS elements and requires partial CSI of only 16 RIS elements as input. We show it achieves a high performance with low requirement for channel estimation for geometric channel models obtained with ray-tracing simulation. The unsupervised learning lets the RISnet find an optimized RIS configuration by itself. Numerical results show that a trained model configures the RIS with low computational effort, considerably outperforms the baselines, and can work with discrete phase shifts.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Peng, Bile ; Besser, Karl-Ludwig ; Raghunath, Ramprasad ; Jamali, Vahid ; Jorswieck, Eduard A.
Art des Eintrags: Bibliographie
Titel: RISnet: A Scalable Approach for Reconfigurable Intelligent Surface Optimization with Partial CSI
Sprache: Englisch
Publikationsjahr: 26 Februar 2024
Verlag: IEEE
Buchtitel: GLOBECOM 2023 - 2023 IEEE Global Communications Conference
Veranstaltungstitel: IEEE GLOBECOM 2023
Veranstaltungsort: Kuala Lumpur, Malaysia
Veranstaltungsdatum: 04.12.2023 - 08.12.2023
DOI: 10.1109/GLOBECOM54140.2023.10437049
Kurzbeschreibung (Abstract):

The reconfigurable intelligent surface (RIS) is a promising technology that enables wireless communication systems to achieve improved performance by intelligently manipulating wireless channels. In this paper, we consider the sum-rate maximization problem in a downlink multi-user multi-input-single-output (MISO) channel via space-division multiple access (SDMA). Two major challenges of this problem are the high dimensionality due to the large number of RIS elements and the difficulty to obtain the full channel state information (CSI), which is assumed known in many algorithms proposed in the literature. Instead, we propose a hybrid machine learning approach using the weighted minimum mean squared error (WMMSE) precoder at the base station (BS) and a dedicated neural network (NN) architecture, RISnet, for RIS configuration. The RISnet has a good scalability to optimize 1296 RIS elements and requires partial CSI of only 16 RIS elements as input. We show it achieves a high performance with low requirement for channel estimation for geometric channel models obtained with ray-tracing simulation. The unsupervised learning lets the RISnet find an optimized RIS configuration by itself. Numerical results show that a trained model configures the RIS with low computational effort, considerably outperforms the baselines, and can work with discrete phase shifts.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Resiliente Kommunikationssysteme (RCS)
Hinterlegungsdatum: 17 Jun 2024 13:48
Letzte Änderung: 15 Okt 2024 08:42
PPN: 522222404
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen