Chen, Si ; Huang, Xiaohui ; Schild, Dieter ; Wang, Di ; Kübel, Christian ; Behrens, Silke (2022)
Pd–In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene.
In: Nanoscale, 13 (47)
doi: 10.1039/D2NR03674F
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Intermetallic nanoparticles (NPs) are highly interesting materials in catalysis due to their geometrically ordered structures and altered electronic properties, but the synthesis of defined intermetallic NPs remains a challenge. Here, we report a novel and facile approach for the synthesis of intermetallic Pd-In NPs in ionic liquids (ILs) at moderate temperatures. Depending on the molar ratio of the metal precursors and the reaction temperature, single-phase Pd3In, PdIn and Pd3In7 NPs were obtained, which was confirmed, e.g. by powder X-ray diffraction, electron microscopy, and optical emission spectroscopy with inductively coupled plasma. The Pd-In NPs stabilized in ILs were used as catalysts in the liquid-phase semi-hydrogenation of diphenylacetylene (DPA). Highly ordered PdIn NPs with a CsCl type structure revealed both high activity and selectivity to cis-stilbene even at full DPA conversion. Intermetallic compounds such as PdIn can be used to isolate contiguous Pd atoms with another base metal into single Pd sites, thereby increasing the catalytic selectivity of Pd while stabilizing the individual sites in the intermetallic structures. This work may provide new pathways for the synthesis of single-phase intermetallic NPs and future insights into a more rational design of bimetallic catalysts with specific catalytic properties.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Chen, Si ; Huang, Xiaohui ; Schild, Dieter ; Wang, Di ; Kübel, Christian ; Behrens, Silke |
Art des Eintrags: | Bibliographie |
Titel: | Pd–In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene |
Sprache: | Englisch |
Publikationsjahr: | 8 Dezember 2022 |
Verlag: | Royal Society of Chemistry |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nanoscale |
Jahrgang/Volume einer Zeitschrift: | 13 |
(Heft-)Nummer: | 47 |
DOI: | 10.1039/D2NR03674F |
Kurzbeschreibung (Abstract): | Intermetallic nanoparticles (NPs) are highly interesting materials in catalysis due to their geometrically ordered structures and altered electronic properties, but the synthesis of defined intermetallic NPs remains a challenge. Here, we report a novel and facile approach for the synthesis of intermetallic Pd-In NPs in ionic liquids (ILs) at moderate temperatures. Depending on the molar ratio of the metal precursors and the reaction temperature, single-phase Pd3In, PdIn and Pd3In7 NPs were obtained, which was confirmed, e.g. by powder X-ray diffraction, electron microscopy, and optical emission spectroscopy with inductively coupled plasma. The Pd-In NPs stabilized in ILs were used as catalysts in the liquid-phase semi-hydrogenation of diphenylacetylene (DPA). Highly ordered PdIn NPs with a CsCl type structure revealed both high activity and selectivity to cis-stilbene even at full DPA conversion. Intermetallic compounds such as PdIn can be used to isolate contiguous Pd atoms with another base metal into single Pd sites, thereby increasing the catalytic selectivity of Pd while stabilizing the individual sites in the intermetallic structures. This work may provide new pathways for the synthesis of single-phase intermetallic NPs and future insights into a more rational design of bimetallic catalysts with specific catalytic properties. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie |
Hinterlegungsdatum: | 12 Jun 2024 09:00 |
Letzte Änderung: | 13 Jun 2024 09:58 |
PPN: | 519113330 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |