TU Darmstadt / ULB / TUbiblio

Safehaul: Risk-Averse Learning for Reliable mmWave Self-Backhauling in 6G Networks

Gargari, Amir Ashtari ; Ortiz Jimenez, Andrea Patricia ; Pagin, Matteo ; Klein, Anja ; Hollick, Matthias ; Zorzi, Michele ; Asadi, Arash (2023)
Safehaul: Risk-Averse Learning for Reliable mmWave Self-Backhauling in 6G Networks.
42nd IEEE Conference on Computer Communications (INFOCOM 2023). New York City, USA (17.05.2023 - 20.05.2023)
doi: 10.1109/INFOCOM53939.2023.10228969
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Wireless backhauling at millimeter-wave frequencies (mmWave) in static scenarios is a well-established practice in cellular networks. However, highly directional and adaptive beamforming in today’s mmWave systems have opened new possibilities for self-backhauling. Tapping into this potential, 3GPP has standardized Integrated Access and Backhaul (IAB) allowing the same base station to serve both access and backhaul traffic. Although much more cost-effective and flexible, resource allocation and path selection in IAB mmWave networks is a formidable task. To date, prior works have addressed this challenge through a plethora of classic optimization and learning methods, generally optimizing a Key Performance Indicator (KPI) such as throughput, latency, and fairness, and little attention has been paid to the reliability of the KPI. We propose Safehaul, a risk-averse learning-based solution for IAB mmWave networks. In addition to optimizing average performance, Safehaul ensures reliability by minimizing the losses in the tail of the performance distribution. We develop a novel simulator and show via extensive simulations that Safehaul not only reduces the latency by up to 43.2% compared to the benchmarks, but also exhibits significantly more reliable performance, e.g., 71.4% less variance in achieved latency.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Gargari, Amir Ashtari ; Ortiz Jimenez, Andrea Patricia ; Pagin, Matteo ; Klein, Anja ; Hollick, Matthias ; Zorzi, Michele ; Asadi, Arash
Art des Eintrags: Bibliographie
Titel: Safehaul: Risk-Averse Learning for Reliable mmWave Self-Backhauling in 6G Networks
Sprache: Englisch
Publikationsjahr: 29 August 2023
Verlag: IEEE
Buchtitel: IEEE INFOCOM 2023 - IEEE Conference on Computer Communications
Veranstaltungstitel: 42nd IEEE Conference on Computer Communications (INFOCOM 2023)
Veranstaltungsort: New York City, USA
Veranstaltungsdatum: 17.05.2023 - 20.05.2023
DOI: 10.1109/INFOCOM53939.2023.10228969
Kurzbeschreibung (Abstract):

Wireless backhauling at millimeter-wave frequencies (mmWave) in static scenarios is a well-established practice in cellular networks. However, highly directional and adaptive beamforming in today’s mmWave systems have opened new possibilities for self-backhauling. Tapping into this potential, 3GPP has standardized Integrated Access and Backhaul (IAB) allowing the same base station to serve both access and backhaul traffic. Although much more cost-effective and flexible, resource allocation and path selection in IAB mmWave networks is a formidable task. To date, prior works have addressed this challenge through a plethora of classic optimization and learning methods, generally optimizing a Key Performance Indicator (KPI) such as throughput, latency, and fairness, and little attention has been paid to the reliability of the KPI. We propose Safehaul, a risk-averse learning-based solution for IAB mmWave networks. In addition to optimizing average performance, Safehaul ensures reliability by minimizing the losses in the tail of the performance distribution. We develop a novel simulator and show via extensive simulations that Safehaul not only reduces the latency by up to 43.2% compared to the benchmarks, but also exhibits significantly more reliable performance, e.g., 71.4% less variance in achieved latency.

Freie Schlagworte: BMBF Open6GHub, emergenCITY, emergenCITY_KOM
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
Hinterlegungsdatum: 17 Jun 2024 10:23
Letzte Änderung: 17 Jun 2024 10:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen