TU Darmstadt / ULB / TUbiblio

Code verification of non‐linear immersed boundary simulations using the method of manufactured solutions

Petö, Márton ; Juhre, Daniel ; Eisenträger, Sascha (2023)
Code verification of non‐linear immersed boundary simulations using the method of manufactured solutions.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 23 (4)
doi: 10.1002/pamm.202300068
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Non‐standard finite element technologies, such as immersed boundary approaches, are typically based on novel algorithms and advanced methods, which require reliable testing of the implemented code. For this purpose, the method of manufactured solutions (MoMS) offers a great framework, enabling an easy and straightforward derivation of closed‐form reference solutions. In this contribution, the focus is kept on non‐linear analysis via the finite cell method (FCM), which is typically based on an unfitted geometry discretization and higher‐order shape functions. The code verification via MoMS generally requires the application of boundary conditions to all boundaries of the simulation domain, which need to be enforced in a weak sense on the immersed boundaries. To avoid this, we propose a novel way of deriving manufactured solutions, for which the necessary constraints on the embedded boundaries are directly fulfilled. Thus, weak boundary conditions can be eliminated from the FCM simulation, and the simulation complexity is reduced when testing other relevant features of the immersed code. In particular, we focus on finite strain analysis of 3D structures with a Neo‐Hookean material model, and show that the proposed technique enables a reliable code verification approach for all load steps throughout the deformation process.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Petö, Márton ; Juhre, Daniel ; Eisenträger, Sascha
Art des Eintrags: Bibliographie
Titel: Code verification of non‐linear immersed boundary simulations using the method of manufactured solutions
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 4
Kollation: 8 Seiten
DOI: 10.1002/pamm.202300068
Zugehörige Links:
Kurzbeschreibung (Abstract):

Non‐standard finite element technologies, such as immersed boundary approaches, are typically based on novel algorithms and advanced methods, which require reliable testing of the implemented code. For this purpose, the method of manufactured solutions (MoMS) offers a great framework, enabling an easy and straightforward derivation of closed‐form reference solutions. In this contribution, the focus is kept on non‐linear analysis via the finite cell method (FCM), which is typically based on an unfitted geometry discretization and higher‐order shape functions. The code verification via MoMS generally requires the application of boundary conditions to all boundaries of the simulation domain, which need to be enforced in a weak sense on the immersed boundaries. To avoid this, we propose a novel way of deriving manufactured solutions, for which the necessary constraints on the embedded boundaries are directly fulfilled. Thus, weak boundary conditions can be eliminated from the FCM simulation, and the simulation complexity is reduced when testing other relevant features of the immersed code. In particular, we focus on finite strain analysis of 3D structures with a Neo‐Hookean material model, and show that the proposed technique enables a reliable code verification approach for all load steps throughout the deformation process.

ID-Nummer: Artikel-ID: e202300068
Zusätzliche Informationen:

Special Issue: 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Numerische Mechanik
Hinterlegungsdatum: 03 Jun 2024 05:19
Letzte Änderung: 03 Jun 2024 05:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen