TU Darmstadt / ULB / TUbiblio

On dynamic crack propagation in a lattice Boltzmann method for elastodynamics in 2D

Müller, Henning ; Schlüter, Alexander ; Faust, Erik ; Müller, Ralf (2024)
On dynamic crack propagation in a lattice Boltzmann method for elastodynamics in 2D.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 2023, 23 (3)
doi: 10.26083/tuprints-00027198
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In recent years, the development of lattice Boltzmann methods (LBMs) for solids has gained attention. Fracture mechanics as a viable application for these methods has been presented before, albeit for mode III cracks in the context of an LBM for antiplane shear deformation. The performance of the LBM itself is promising, while the usage of a regular lattice simplifies the modelling of fractures significantly. Recent advancements in LBMs for solids, especially the description of Dirichlet‐ and Neumann‐type boundary conditions, now make it possible to extend the LBM simulation of crack propagation to the plane strain case with modes I and II crack opening, including growth with non‐uniform speed in arbitrary directions. For this, the configurational force acting on a crack tip is utilised. The definition of the moments of the LBM, which are based on the balance laws of continuum mechanics, render the evaluation of macroscopic fields in the configuration straightforward. In this work, the general in‐plane case of dynamic crack propagation is shown and necessary considerations for the implementation are discussed. Lastly, numerical examples showcase the capabilities of the proposed method to model dynamic fractures and establish a proof‐of‐concept.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Müller, Henning ; Schlüter, Alexander ; Faust, Erik ; Müller, Ralf
Art des Eintrags: Zweitveröffentlichung
Titel: On dynamic crack propagation in a lattice Boltzmann method for elastodynamics in 2D
Sprache: Englisch
Publikationsjahr: 28 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: November 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 3
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00027198
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27198
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In recent years, the development of lattice Boltzmann methods (LBMs) for solids has gained attention. Fracture mechanics as a viable application for these methods has been presented before, albeit for mode III cracks in the context of an LBM for antiplane shear deformation. The performance of the LBM itself is promising, while the usage of a regular lattice simplifies the modelling of fractures significantly. Recent advancements in LBMs for solids, especially the description of Dirichlet‐ and Neumann‐type boundary conditions, now make it possible to extend the LBM simulation of crack propagation to the plane strain case with modes I and II crack opening, including growth with non‐uniform speed in arbitrary directions. For this, the configurational force acting on a crack tip is utilised. The definition of the moments of the LBM, which are based on the balance laws of continuum mechanics, render the evaluation of macroscopic fields in the configuration straightforward. In this work, the general in‐plane case of dynamic crack propagation is shown and necessary considerations for the implementation are discussed. Lastly, numerical examples showcase the capabilities of the proposed method to model dynamic fractures and establish a proof‐of‐concept.

ID-Nummer: Artikel-ID: e202300230
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-271982
Zusätzliche Informationen:

Special Issue: 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 28 Mai 2024 12:06
Letzte Änderung: 29 Mai 2024 10:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen