TU Darmstadt / ULB / TUbiblio

Direct Recycling of Hot‐Deformed Nd–Fe–B Magnet Scrap by Field‐Assisted Sintering Technology

Keszler, Monica ; Grosswendt, Felix ; Assmann, Anna-Caroline ; Krengel, Martin ; Maccari, Fernando ; Gutfleisch, Oliver ; Sebold, Doris ; Guillon, Olivier ; Weber, Sebastian ; Bram, Martin (2024)
Direct Recycling of Hot‐Deformed Nd–Fe–B Magnet Scrap by Field‐Assisted Sintering Technology.
In: Advanced Energy and Sustainability Research, 2024, 5 (1)
doi: 10.26083/tuprints-00027221
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Recycling of Nd–Fe–B magnets is an ongoing challenge regarding circular economy. State‐of‐the‐art magnet production methods, such as hot deformation, have limitations with respect to direct recycling of magnet scrap particles that differ from pristine melt‐spun Nd–Fe–B powder. Recent work has shown that a combination of presintering by field‐assisted sintering technology/spark plasma sintering (FAST/SPS) and hot deformation by flash spark plasma sintering (flash SPS) has the potential to directly produce Nd–Fe–B magnets from 100% scrap material. Both processes have the capability to adjust and monitor process parameters closely, resulting in recycled magnets with properties similar to commercial magnets but made directly from crushed and recycled Nd–Fe–B powder that partially or completely replaces pristine melt‐spun Nd–Fe–B powder. Herein, a systematic study is done inserting recycled magnet particles into a flash SPS deformed magnet, considering the effects of different weight percentages of scrap material of varied particle size fractions. In some cases, coercivity HcJ of >1400 kAm⁻¹ and remanence Br of 1.1 T can be achieved with 20 wt% scrap material. The relationship between particle size fraction, oxygen uptake, and percentage of recyclate in a final magnet are all explored and discussed with respect to magnets made from pristine material.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Keszler, Monica ; Grosswendt, Felix ; Assmann, Anna-Caroline ; Krengel, Martin ; Maccari, Fernando ; Gutfleisch, Oliver ; Sebold, Doris ; Guillon, Olivier ; Weber, Sebastian ; Bram, Martin
Art des Eintrags: Zweitveröffentlichung
Titel: Direct Recycling of Hot‐Deformed Nd–Fe–B Magnet Scrap by Field‐Assisted Sintering Technology
Sprache: Englisch
Publikationsjahr: 28 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Januar 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Energy and Sustainability Research
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 1
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00027221
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27221
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Recycling of Nd–Fe–B magnets is an ongoing challenge regarding circular economy. State‐of‐the‐art magnet production methods, such as hot deformation, have limitations with respect to direct recycling of magnet scrap particles that differ from pristine melt‐spun Nd–Fe–B powder. Recent work has shown that a combination of presintering by field‐assisted sintering technology/spark plasma sintering (FAST/SPS) and hot deformation by flash spark plasma sintering (flash SPS) has the potential to directly produce Nd–Fe–B magnets from 100% scrap material. Both processes have the capability to adjust and monitor process parameters closely, resulting in recycled magnets with properties similar to commercial magnets but made directly from crushed and recycled Nd–Fe–B powder that partially or completely replaces pristine melt‐spun Nd–Fe–B powder. Herein, a systematic study is done inserting recycled magnet particles into a flash SPS deformed magnet, considering the effects of different weight percentages of scrap material of varied particle size fractions. In some cases, coercivity HcJ of >1400 kAm⁻¹ and remanence Br of 1.1 T can be achieved with 20 wt% scrap material. The relationship between particle size fraction, oxygen uptake, and percentage of recyclate in a final magnet are all explored and discussed with respect to magnets made from pristine material.

Freie Schlagworte: circular economy, field assisted sintering, functional materials, permanent magnets, rare earth elements, recycling
ID-Nummer: Artikel-ID: 2300184
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-272214
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 300 Sozialwissenschaften > 333.7 Natürliche Ressourcen, Energie und Umwelt
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 28 Mai 2024 11:46
Letzte Änderung: 29 Mai 2024 06:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen