TU Darmstadt / ULB / TUbiblio

Stock picking with machine learning

Wolff, Dominik ; Echterling, Fabian (2024)
Stock picking with machine learning.
In: Journal of Forecasting, 2024, 43 (1)
doi: 10.26083/tuprints-00027203
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We analyze machine learning algorithms for stock selection. Our study builds on weekly data for the historical constituents of the S&P500 over the period from January 1999 to March 2021 and builds on typical equity factors, additional firm fundamentals, and technical indicators. A variety of machine learning models are trained on the binary classification task to predict whether a specific stock outperforms or underperforms the cross‐sectional median return over the subsequent week. We analyze weekly trading strategies that invest in stocks with the highest predicted outperformance probability. Our empirical results show substantial and significant outperformance of machine learning‐based stock selection models compared to an equally weighted benchmark. Interestingly, we find more simplistic regularized logistic regression models to perform similarly well compared to more complex machine learning models. The results are robust when applied to the STOXX Europe 600 as alternative asset universe.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Wolff, Dominik ; Echterling, Fabian
Art des Eintrags: Zweitveröffentlichung
Titel: Stock picking with machine learning
Sprache: Englisch
Publikationsjahr: 28 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Januar 2024
Ort der Erstveröffentlichung: New York
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Forecasting
Jahrgang/Volume einer Zeitschrift: 43
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00027203
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27203
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We analyze machine learning algorithms for stock selection. Our study builds on weekly data for the historical constituents of the S&P500 over the period from January 1999 to March 2021 and builds on typical equity factors, additional firm fundamentals, and technical indicators. A variety of machine learning models are trained on the binary classification task to predict whether a specific stock outperforms or underperforms the cross‐sectional median return over the subsequent week. We analyze weekly trading strategies that invest in stocks with the highest predicted outperformance probability. Our empirical results show substantial and significant outperformance of machine learning‐based stock selection models compared to an equally weighted benchmark. Interestingly, we find more simplistic regularized logistic regression models to perform similarly well compared to more complex machine learning models. The results are robust when applied to the STOXX Europe 600 as alternative asset universe.

Freie Schlagworte: equity portfolio management, investment decisions, machine learning, neural networks, stock picking, stock selection
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-272037
Zusätzliche Informationen:

The views expressed in this paper are those of the authors and do not necessarily reflect those of Deka Investment GmbH or its employees.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Unternehmensfinanzierung
Hinterlegungsdatum: 28 Mai 2024 11:57
Letzte Änderung: 29 Mai 2024 10:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen