TU Darmstadt / ULB / TUbiblio

Graphitizability of Polymer Thin Films: An In Situ TEM Study of Thickness Effects on Nanocrystalline Graphene/Glassy Carbon Formation

Shyam Kumar, C. N. ; Possel, Clemens ; Dehm, Simone ; Chakravadhanula, Venkata Sai Kiran ; Wang, Di ; Wenzel, Wolfgang ; Krupke, Ralph ; Kübel, Christian (2024)
Graphitizability of Polymer Thin Films: An In Situ TEM Study of Thickness Effects on Nanocrystalline Graphene/Glassy Carbon Formation.
In: Macromolecular Materials and Engineering, 2024, 309 (1)
doi: 10.26083/tuprints-00027201
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Polymer pyrolysis has emerged as a versatile method to synthesize graphenoid (graphene like) materials with varying thickness and properties. The morphology of the thin film, especially the thickness, greatly affects the graphitizability and the properties of the graphenoid material. Using in situ current annealing inside a transmission electron microscope (TEM), the thickness‐dependent structural evolution of the polymer film with a special focus on thickness effects is followed. At high temperatures, thin samples form large graphene layers oriented parallel to the substrate, whereas in thick samples multi‐walled cage‐like structures are formed. Moleclar Dynamics (MD) simulations reveal a film thickness of 40 Å below which, the carbonized layers align parallel to the surface. For thicker samples, the orientation of the layers becomes increasingly misoriented starting from the surface to the center. This structural change can be attributed to the formation of bonded multi‐layers from the initially unsaturated activated edges. The resulting cage‐like structures are stable even during simulated annealing at temperatures as high as 3500 K. An atomistic understanding of the formation of these structures is presented. The results clearly indicate the critical effect of thickness on the graphitizability of polymers and provide a new understanding of the structural evolution during pyrolysis.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Shyam Kumar, C. N. ; Possel, Clemens ; Dehm, Simone ; Chakravadhanula, Venkata Sai Kiran ; Wang, Di ; Wenzel, Wolfgang ; Krupke, Ralph ; Kübel, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: Graphitizability of Polymer Thin Films: An In Situ TEM Study of Thickness Effects on Nanocrystalline Graphene/Glassy Carbon Formation
Sprache: Englisch
Publikationsjahr: 28 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Januar 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Macromolecular Materials and Engineering
Jahrgang/Volume einer Zeitschrift: 309
(Heft-)Nummer: 1
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00027201
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27201
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Polymer pyrolysis has emerged as a versatile method to synthesize graphenoid (graphene like) materials with varying thickness and properties. The morphology of the thin film, especially the thickness, greatly affects the graphitizability and the properties of the graphenoid material. Using in situ current annealing inside a transmission electron microscope (TEM), the thickness‐dependent structural evolution of the polymer film with a special focus on thickness effects is followed. At high temperatures, thin samples form large graphene layers oriented parallel to the substrate, whereas in thick samples multi‐walled cage‐like structures are formed. Moleclar Dynamics (MD) simulations reveal a film thickness of 40 Å below which, the carbonized layers align parallel to the surface. For thicker samples, the orientation of the layers becomes increasingly misoriented starting from the surface to the center. This structural change can be attributed to the formation of bonded multi‐layers from the initially unsaturated activated edges. The resulting cage‐like structures are stable even during simulated annealing at temperatures as high as 3500 K. An atomistic understanding of the formation of these structures is presented. The results clearly indicate the critical effect of thickness on the graphitizability of polymers and provide a new understanding of the structural evolution during pyrolysis.

Freie Schlagworte: current annealing, glassy carbon, in situ transmission electron microscopy, nanocrystalline graphene, pyrolysis
ID-Nummer: Artikel-ID: 2300230
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-272010
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
Hinterlegungsdatum: 28 Mai 2024 12:05
Letzte Änderung: 30 Jul 2024 08:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen