TU Darmstadt / ULB / TUbiblio

Polymer‐derived ceramic aerogels to immobilize sulfur for Li‐S batteries

Zambotti, Andrea ; Qu, Fangmu ; Costa, Giacomo ; Graczyk-Zajac, Magdalena ; Sorarù, Gian Domenico (2023)
Polymer‐derived ceramic aerogels to immobilize sulfur for Li‐S batteries.
In: Energy Technology : Generation, Conversion, Storage, Distribution, 11 (12)
doi: 10.1002/ente.202300488
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Lithium–sulfur batteries are among the promising high‐capacity candidates owing to the superior theoretical capacity of sulfur, when compared with conventional cathodes such as LiCoO₂. However, several issues must be addressed before these batteries can be considered fully operational. Major issues regard the insulating nature of sulfur and the so‐called shuttle effect of soluble polysulfides, which dramatically reduces the cathode capacity upon cycling. Herein, three carbon‐containing polymer‐derived ceramic aerogels are characterized belonging to the Si‐C‐O and Si‐C‐N systems, infiltrated with sulfur to work as cathodes for Li‐S batteries. The electrochemical performances are evaluated in relation to the microstructural and chemical features of such materials. In particular, the effect of the pore size of the ceramic matrices on the shuttling behavior of polysulfides is investigated. Despite the high initial specific capacities exceeding hundreds of mAh g⁻¹, all types of cathodes show stable capacities in the 60–120 mAh g⁻¹ range after 100 cycles.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Zambotti, Andrea ; Qu, Fangmu ; Costa, Giacomo ; Graczyk-Zajac, Magdalena ; Sorarù, Gian Domenico
Art des Eintrags: Bibliographie
Titel: Polymer‐derived ceramic aerogels to immobilize sulfur for Li‐S batteries
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energy Technology : Generation, Conversion, Storage, Distribution
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 12
Kollation: 9 Seiten
DOI: 10.1002/ente.202300488
Zugehörige Links:
Kurzbeschreibung (Abstract):

Lithium–sulfur batteries are among the promising high‐capacity candidates owing to the superior theoretical capacity of sulfur, when compared with conventional cathodes such as LiCoO₂. However, several issues must be addressed before these batteries can be considered fully operational. Major issues regard the insulating nature of sulfur and the so‐called shuttle effect of soluble polysulfides, which dramatically reduces the cathode capacity upon cycling. Herein, three carbon‐containing polymer‐derived ceramic aerogels are characterized belonging to the Si‐C‐O and Si‐C‐N systems, infiltrated with sulfur to work as cathodes for Li‐S batteries. The electrochemical performances are evaluated in relation to the microstructural and chemical features of such materials. In particular, the effect of the pore size of the ceramic matrices on the shuttling behavior of polysulfides is investigated. Despite the high initial specific capacities exceeding hundreds of mAh g⁻¹, all types of cathodes show stable capacities in the 60–120 mAh g⁻¹ range after 100 cycles.

Freie Schlagworte: aerogels, Li-S batteries, lithium, polymer-derived ceramics, porous ceramics, sulfur
ID-Nummer: Artikel-ID: 2300488
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 28 Mai 2024 06:42
Letzte Änderung: 28 Mai 2024 12:28
PPN: 518692418
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen