TU Darmstadt / ULB / TUbiblio

Machine Learning Assisted Monte Carlo Simulation: Efficient Overlap Determination for Nonspherical Hard Bodies

Bag, Saientan ; Jha, Ayush ; Müller‐Plathe, Florian (2024)
Machine Learning Assisted Monte Carlo Simulation: Efficient Overlap Determination for Nonspherical Hard Bodies.
In: Advanced Theory and Simulations, 2023, 6 (11)
doi: 10.26083/tuprints-00027225
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Standard molecular dynamics (MD) and Monte Carlo (MC) simulations deal with spherical particles. Extending the standard simulation methodologies to the nonspherical objects is non‐trivial. To circumvent this problem, nonspherical bodies are often treated as a collection of constituent spherical objects. As the number of these constituent objects becomes large, the computational burden to simulate the system also increases. Here, an alternative way is proposed to simulate nonspherical rigid bodies having pairwise repulsive interactions. This approach is based on a machine learning (ML)‐based model, which predicts the overlap between two nonspherical bodies. The ML model is easy to train and the computation cost of its implementation remains independent of the number of constituent spheres used to represent a nonspherical rigid body. When used in MC simulation, this method is faster than the standard implementation, where overlap determination is based on calculating the distance between constituent spheres. This proposed ML‐based MC method produces similar structural features (in comparison to the standard implementation) in both two and three dimensions, and can qualitatively capture the isotropic to nematic transition of rigid rods in three dimensions. It is believed that this work is a step toward a time‐efficient simulation of non‐spherical rigid bodies.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Bag, Saientan ; Jha, Ayush ; Müller‐Plathe, Florian
Art des Eintrags: Zweitveröffentlichung
Titel: Machine Learning Assisted Monte Carlo Simulation: Efficient Overlap Determination for Nonspherical Hard Bodies
Sprache: Englisch
Publikationsjahr: 27 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: November 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Theory and Simulations
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 11
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00027225
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27225
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Standard molecular dynamics (MD) and Monte Carlo (MC) simulations deal with spherical particles. Extending the standard simulation methodologies to the nonspherical objects is non‐trivial. To circumvent this problem, nonspherical bodies are often treated as a collection of constituent spherical objects. As the number of these constituent objects becomes large, the computational burden to simulate the system also increases. Here, an alternative way is proposed to simulate nonspherical rigid bodies having pairwise repulsive interactions. This approach is based on a machine learning (ML)‐based model, which predicts the overlap between two nonspherical bodies. The ML model is easy to train and the computation cost of its implementation remains independent of the number of constituent spheres used to represent a nonspherical rigid body. When used in MC simulation, this method is faster than the standard implementation, where overlap determination is based on calculating the distance between constituent spheres. This proposed ML‐based MC method produces similar structural features (in comparison to the standard implementation) in both two and three dimensions, and can qualitatively capture the isotropic to nematic transition of rigid rods in three dimensions. It is believed that this work is a step toward a time‐efficient simulation of non‐spherical rigid bodies.

Freie Schlagworte: machine learning (ML), Monte Carlo (MC), non‐spherical particles
ID-Nummer: Artikel-ID: 2300520
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-272254
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 27 Mai 2024 13:09
Letzte Änderung: 28 Mai 2024 06:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen