TU Darmstadt / ULB / TUbiblio

Rate-dependent energy dissipation of graded viscoelastic structures fabricated by grayscale vat photopolymerization

Valizadeh, Iman ; Weeger, Oliver (2024)
Rate-dependent energy dissipation of graded viscoelastic structures fabricated by grayscale vat photopolymerization.
In: Smart Materials and Structures, 33 (6)
doi: 10.1088/1361-665X/ad442a
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A major benefit of additive manufacturing technologies is precise control over structural topologies and material properties, which allows to tailor, for instance, energy absorption and dissipation. While vat photopolymerization is generally restricted to a single material, grayscale masked stereolithography (gMSLA) allows to customize material behavior by grading the light intensity within a structure. This study investigates the impact and opportunities of grayscale grading strategies on the rate-dependent mechanical behavior of structures fabricated by gMSLA. Considering the viscoelastic nature of polymers, rate-dependent energy dissipation is explored, introducing a parametric linear viscoelastic constitutive model for varying grayscales. The investigation includes the comprehensive characterization of mechanical properties, numerical finite element simulation, validation through experimental procedures, and exploration of dissipation energy under different strain rates. In this way, a rational function successfully determines the critical strain rate at which the maximum dissipation occurs. Overall, the research offers a comprehensive investigation of the mechanical dissipation behavior of graded 3D printed structures, laying the foundation for further studies and advancements aimed at optimizing these structures for enhanced energy absorption capabilities.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Valizadeh, Iman ; Weeger, Oliver
Art des Eintrags: Bibliographie
Titel: Rate-dependent energy dissipation of graded viscoelastic structures fabricated by grayscale vat photopolymerization
Sprache: Englisch
Publikationsjahr: 9 Mai 2024
Verlag: IOP Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Smart Materials and Structures
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 6
DOI: 10.1088/1361-665X/ad442a
Kurzbeschreibung (Abstract):

A major benefit of additive manufacturing technologies is precise control over structural topologies and material properties, which allows to tailor, for instance, energy absorption and dissipation. While vat photopolymerization is generally restricted to a single material, grayscale masked stereolithography (gMSLA) allows to customize material behavior by grading the light intensity within a structure. This study investigates the impact and opportunities of grayscale grading strategies on the rate-dependent mechanical behavior of structures fabricated by gMSLA. Considering the viscoelastic nature of polymers, rate-dependent energy dissipation is explored, introducing a parametric linear viscoelastic constitutive model for varying grayscales. The investigation includes the comprehensive characterization of mechanical properties, numerical finite element simulation, validation through experimental procedures, and exploration of dissipation energy under different strain rates. In this way, a rational function successfully determines the critical strain rate at which the maximum dissipation occurs. Overall, the research offers a comprehensive investigation of the mechanical dissipation behavior of graded 3D printed structures, laying the foundation for further studies and advancements aimed at optimizing these structures for enhanced energy absorption capabilities.

ID-Nummer: Artikel-ID: 065006
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 27 Mai 2024 06:51
Letzte Änderung: 27 Mai 2024 11:48
PPN: 51863180X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen