TU Darmstadt / ULB / TUbiblio

Towards Trustworthy AI Software Development Assistance

Maninger, Daniel ; Narasimhan, Krishna ; Mezini, Mira (2024)
Towards Trustworthy AI Software Development Assistance.
44th International Conference on Software Engineering: New Ideas and Emerging Results. Lisbon, Portugal (14.04.2024 - 20.04.2024)
doi: 10.1145/3639476.3639770
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

It is expected that in the near future, AI software development assistants will play an important role in the software industry. However, current software development assistants tend to be unreliable, often producing incorrect, unsafe, or low-quality code. We seek to resolve these issues by introducing a holistic architecture for constructing, training, and using trustworthy AI software development assistants. In the center of the architecture, there is a foundational LLM trained on datasets representative of real-world coding scenarios and complex software architectures, and fine-tuned on code quality criteria beyond correctness. The LLM will make use of graph-based code representations for advanced semantic comprehension. We envision a knowledge graph integrated into the system to provide up-to-date background knowledge and to enable the assistant to provide appropriate explanations. Finally, a modular framework for constrained decoding will ensure that certain guarantees (e.g., for correctness and security) hold for the generated code.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Maninger, Daniel ; Narasimhan, Krishna ; Mezini, Mira
Art des Eintrags: Bibliographie
Titel: Towards Trustworthy AI Software Development Assistance
Sprache: Englisch
Publikationsjahr: 24 Mai 2024
Verlag: ACM
Buchtitel: ICSE-NIER'24 : Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results
Reihe: ICSE-NIER'24
Veranstaltungstitel: 44th International Conference on Software Engineering: New Ideas and Emerging Results
Veranstaltungsort: Lisbon, Portugal
Veranstaltungsdatum: 14.04.2024 - 20.04.2024
DOI: 10.1145/3639476.3639770
Zugehörige Links:
Kurzbeschreibung (Abstract):

It is expected that in the near future, AI software development assistants will play an important role in the software industry. However, current software development assistants tend to be unreliable, often producing incorrect, unsafe, or low-quality code. We seek to resolve these issues by introducing a holistic architecture for constructing, training, and using trustworthy AI software development assistants. In the center of the architecture, there is a foundational LLM trained on datasets representative of real-world coding scenarios and complex software architectures, and fine-tuned on code quality criteria beyond correctness. The LLM will make use of graph-based code representations for advanced semantic comprehension. We envision a knowledge graph integrated into the system to provide up-to-date background knowledge and to enable the assistant to provide appropriate explanations. Finally, a modular framework for constrained decoding will ensure that certain guarantees (e.g., for correctness and security) hold for the generated code.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Softwaretechnik
Hinterlegungsdatum: 03 Jun 2024 11:52
Letzte Änderung: 09 Okt 2024 13:14
PPN: 522052665
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen