TU Darmstadt / ULB / TUbiblio

Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning

Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L. (2024)
Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning.
In: Nature Communications, 15 (1)
doi: 10.1038/s41467-024-45840-9
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Silicon–oxygen compounds are among the most important ones in the natural sciences, occurring as building blocks in minerals and being used in semiconductors and catalysis. Beyond the well-known silicon dioxide, there are phases with different stoichiometric composition and nanostructured composites. One of the key challenges in understanding the Si–O system is therefore to accurately account for its nanoscale heterogeneity beyond the length scale of individual atoms. Here we show that a unified computational description of the full Si–O system is indeed possible, based on atomistic machine learning coupled to an active-learning workflow. We showcase applications to very-high-pressure silica, to surfaces and aerogels, and to the structure of amorphous silicon monoxide. In a wider context, our work illustrates how structural complexity in functional materials beyond the atomic and few-nanometre length scales can be captured with active machine learning.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L.
Art des Eintrags: Bibliographie
Titel: Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning
Sprache: Englisch
Publikationsjahr: 2 März 2024
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 1
DOI: 10.1038/s41467-024-45840-9
Kurzbeschreibung (Abstract):

Silicon–oxygen compounds are among the most important ones in the natural sciences, occurring as building blocks in minerals and being used in semiconductors and catalysis. Beyond the well-known silicon dioxide, there are phases with different stoichiometric composition and nanostructured composites. One of the key challenges in understanding the Si–O system is therefore to accurately account for its nanoscale heterogeneity beyond the length scale of individual atoms. Here we show that a unified computational description of the full Si–O system is indeed possible, based on atomistic machine learning coupled to an active-learning workflow. We showcase applications to very-high-pressure silica, to surfaces and aerogels, and to the structure of amorphous silicon monoxide. In a wider context, our work illustrates how structural complexity in functional materials beyond the atomic and few-nanometre length scales can be captured with active machine learning.

Freie Schlagworte: AL578/29-1
ID-Nummer: Artikel-ID: 1927
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
TU-Projekte: PTJ|03XP0174A|FestBatt-Daten
DFG|RO4542/4-1|Interatomare Potenti
DFG|STU611/5-1|Von interatomaren Po
Hinterlegungsdatum: 27 Mai 2024 06:34
Letzte Änderung: 27 Mai 2024 11:45
PPN: 518631567
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen