TU Darmstadt / ULB / TUbiblio

Integrating Block Robust Empirical Standardised Influence Function and Block Average to Robustify Seasonal Block Bootstrap Methods

Kunz, Pertami J. ; Zoubir, Abdelhak M. (2024)
Integrating Block Robust Empirical Standardised Influence Function and Block Average to Robustify Seasonal Block Bootstrap Methods.
32nd European Signal Processing Conference (EUSIPCO 2024). Lyon, France (26.08.2024 - 30.08.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We propose two robust seasonal bootstrap techniques, based on our prior work, the Complex Seasonal Circular Block Bootstrap (XSCBB). These robustifications are implemented through two methods, the Block Robust Empirical Standardised Influence Function (BRESIF or Block RESIF) and the Block Average XSCBB (BA-XSCBB) methods. The BRESIF-XSCBB method employs an adaptive weighting function to adjust the XSCBB technique for time series with heavy-tailed distributions or extreme values. Conversely, the Block-Average/Median XSCBB strategy seeks to reduce the influence of outliers by incorporating either the block average or median to restore the seasonal characteristics. Through simulation studies, we showcase the efficacy of these methods in enhancing the XSCBB's performance when outliers are present. Our results indicate that these robustified versions of XSCBB not only pre-serve the original method's capacity to detect complex seasonal patterns but also significantly enhance resilience and accuracy in challenging data scenarios

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Kunz, Pertami J. ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Integrating Block Robust Empirical Standardised Influence Function and Block Average to Robustify Seasonal Block Bootstrap Methods
Sprache: Englisch
Publikationsjahr: 23 Oktober 2024
Verlag: IEEE
Buchtitel: 32nd European Signal Processing Conference (EUSIPCO 2024): Proceedings
Veranstaltungstitel: 32nd European Signal Processing Conference (EUSIPCO 2024)
Veranstaltungsort: Lyon, France
Veranstaltungsdatum: 26.08.2024 - 30.08.2024
URL / URN: https://ieeexplore.ieee.org/document/10715332
Kurzbeschreibung (Abstract):

We propose two robust seasonal bootstrap techniques, based on our prior work, the Complex Seasonal Circular Block Bootstrap (XSCBB). These robustifications are implemented through two methods, the Block Robust Empirical Standardised Influence Function (BRESIF or Block RESIF) and the Block Average XSCBB (BA-XSCBB) methods. The BRESIF-XSCBB method employs an adaptive weighting function to adjust the XSCBB technique for time series with heavy-tailed distributions or extreme values. Conversely, the Block-Average/Median XSCBB strategy seeks to reduce the influence of outliers by incorporating either the block average or median to restore the seasonal characteristics. Through simulation studies, we showcase the efficacy of these methods in enhancing the XSCBB's performance when outliers are present. Our results indicate that these robustified versions of XSCBB not only pre-serve the original method's capacity to detect complex seasonal patterns but also significantly enhance resilience and accuracy in challenging data scenarios

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 06 Nov 2024 15:39
Letzte Änderung: 06 Nov 2024 15:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen