TU Darmstadt / ULB / TUbiblio

Spatial Inference Network: Indoor Proximity Detection via Multiple Hypothesis Testing

Gölz, Martin ; Baudenbacher, Luca O. ; Zoubir, Abdelhak M. ; Koivunen, Visa (2024)
Spatial Inference Network: Indoor Proximity Detection via Multiple Hypothesis Testing.
32nd European Signal Processing Conference (EUSIPCO 2024). Lyon, France (26.08.2024 - 30.08.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Spatial inference is an important task in large-scale wireless sensor networks, the Internet of Things, radio spectrum monitoring, and smart cities. In this paper, we extend and adopt our spatial multiple hypothesis testing approach with false discovery rate control to a real-world spatial inference sensor system detecting the presence of people in indoor settings. The developed inference method is data driven, using empirical statistics and conformal p-values instead of assuming specific probability models. The approach has both, low computational complexity and energy efficient communication, hence expanding the lifespan of the network. Each sensor computes local p-values and communicates them to a fusion center. This performs the actual testing and identifies the regions where the alternative hypotheses are in place. The reliable performance of the method is demonstrated using real-world measured data acquired by an indoor wireless sensor network.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Gölz, Martin ; Baudenbacher, Luca O. ; Zoubir, Abdelhak M. ; Koivunen, Visa
Art des Eintrags: Bibliographie
Titel: Spatial Inference Network: Indoor Proximity Detection via Multiple Hypothesis Testing
Sprache: Englisch
Publikationsjahr: 23 Oktober 2024
Verlag: IEEE
Buchtitel: 32nd European Signal Processing Conference (EUSIPCO 2024): Proceedings
Veranstaltungstitel: 32nd European Signal Processing Conference (EUSIPCO 2024)
Veranstaltungsort: Lyon, France
Veranstaltungsdatum: 26.08.2024 - 30.08.2024
URL / URN: https://ieeexplore.ieee.org/document/10715082
Kurzbeschreibung (Abstract):

Spatial inference is an important task in large-scale wireless sensor networks, the Internet of Things, radio spectrum monitoring, and smart cities. In this paper, we extend and adopt our spatial multiple hypothesis testing approach with false discovery rate control to a real-world spatial inference sensor system detecting the presence of people in indoor settings. The developed inference method is data driven, using empirical statistics and conformal p-values instead of assuming specific probability models. The approach has both, low computational complexity and energy efficient communication, hence expanding the lifespan of the network. Each sensor computes local p-values and communicates them to a fusion center. This performs the actual testing and identifies the regions where the alternative hypotheses are in place. The reliable performance of the method is demonstrated using real-world measured data acquired by an indoor wireless sensor network.

Freie Schlagworte: emergenCITY_CPS, emergenCITY
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 06 Nov 2024 15:36
Letzte Änderung: 06 Nov 2024 15:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen