TU Darmstadt / ULB / TUbiblio

Development of magnetocaloric microstructures from equiatomic iron–rhodium nanoparticles through laser sintering

Tahir, Shabbir ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Doñate‐Buendía, Carlos ; Ziefuß, Anna R. ; Wende, Heiko ; Gökce, Bilal (2023)
Development of magnetocaloric microstructures from equiatomic iron–rhodium nanoparticles through laser sintering.
In: Advanced Engineering Materials, 25 (20)
doi: 10.1002/adem.202300245
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Pronounced magnetocaloric effects are typically observed in materials that often contain expensive and rare elements and are therefore costly to mass produce. However, they can rather be exploited on a small scale for miniaturized devices such as magnetic micro coolers, thermal sensors, and magnetic micropumps. Herein, a method is developed to generate magnetocaloric microstructures from an equiatomic iron–rhodium (FeRh) bulk target through a stepwise process. First, paramagnetic near‐to‐equiatomic solid‐solution FeRh nanoparticles (NPs) are generated through picosecond (ps)‐pulsed laser ablation in ethanol, which are then transformed into a printable ink and patterned using a continuous wave laser. Laser patterning not only leads to sintering of the NP ink but also triggers the phase transformation of the initial γ‐ to B2‐FeRh. At a laser fluence of 246 J cm⁻², a partial (52%) phase transformation from γ‐ to B2‐FeRh is obtained, resulting in a magnetization increase of 35 Am² kg⁻¹ across the antiferromagnetic to ferromagnetic phase transition. This represents a ca. sixfold enhancement compared to previous furnace‐annealed FeRh ink. Finally, herein, the ability is demonstrated to create FeRh 2D structures with different geometries using laser sintering of magnetocaloric inks, which offers advantages such as micrometric spatial resolution, in situ annealing, and structure design flexibility.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Tahir, Shabbir ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Doñate‐Buendía, Carlos ; Ziefuß, Anna R. ; Wende, Heiko ; Gökce, Bilal
Art des Eintrags: Bibliographie
Titel: Development of magnetocaloric microstructures from equiatomic iron–rhodium nanoparticles through laser sintering
Sprache: Englisch
Publikationsjahr: Oktober 2023
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 25
(Heft-)Nummer: 20
Kollation: 10 Seiten
DOI: 10.1002/adem.202300245
Zugehörige Links:
Kurzbeschreibung (Abstract):

Pronounced magnetocaloric effects are typically observed in materials that often contain expensive and rare elements and are therefore costly to mass produce. However, they can rather be exploited on a small scale for miniaturized devices such as magnetic micro coolers, thermal sensors, and magnetic micropumps. Herein, a method is developed to generate magnetocaloric microstructures from an equiatomic iron–rhodium (FeRh) bulk target through a stepwise process. First, paramagnetic near‐to‐equiatomic solid‐solution FeRh nanoparticles (NPs) are generated through picosecond (ps)‐pulsed laser ablation in ethanol, which are then transformed into a printable ink and patterned using a continuous wave laser. Laser patterning not only leads to sintering of the NP ink but also triggers the phase transformation of the initial γ‐ to B2‐FeRh. At a laser fluence of 246 J cm⁻², a partial (52%) phase transformation from γ‐ to B2‐FeRh is obtained, resulting in a magnetization increase of 35 Am² kg⁻¹ across the antiferromagnetic to ferromagnetic phase transition. This represents a ca. sixfold enhancement compared to previous furnace‐annealed FeRh ink. Finally, herein, the ability is demonstrated to create FeRh 2D structures with different geometries using laser sintering of magnetocaloric inks, which offers advantages such as micrometric spatial resolution, in situ annealing, and structure design flexibility.

Freie Schlagworte: antiferromagnetic-ferromagnetic phase transition, iron-rhodium, laser ablation in liquid, laser sintering, micro cooling
ID-Nummer: Artikel-ID: 2300245
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 22 Mai 2024 05:42
Letzte Änderung: 22 Mai 2024 09:05
PPN: 518469433
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen