TU Darmstadt / ULB / TUbiblio

Machine learning–based analysis of in-cylinder flow fields to predict combustion engine performance

Hanuschkin, Alexander ; Schober, Steffen ; Bode, Johannes ; Schorr, Jürgen ; Böhm, Benjamin ; Krüger, Christian ; Peters, Steven (2024)
Machine learning–based analysis of in-cylinder flow fields to predict combustion engine performance.
In: International Journal of Engine Research, 2021, 22 (1)
doi: 10.26083/tuprints-00016051
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Cycle-to-cycle variations in an optically accessible four-stroke direct injection spark-ignition gasoline engine are investigated using high-speed scanning particle image velocimetry and in-cylinder pressure measurements. Particle image velocimetry allows to measure in-cylinder flow fields at high spatial and temporal resolution. Binary classifiers are used to predict combustion cycles of high indicated mean effective pressure based on in-cylinder flow features and engineered tumble features obtained during the intake and the compression stroke. Basic in-cylinder flow features of the mid-cylinder plane are sufficient to predict combustion cycles of high indicated mean effective pressure as early as 180 degree crank angle before the top dead center at 0 degree crank angle. Engineered characteristic tumble features derived from the flow field are not superior to the basic flow features. The results are independent of the tested machine learning method (multilayer perceptron and boosted decision trees) and robust to hyper-parameter selection.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hanuschkin, Alexander ; Schober, Steffen ; Bode, Johannes ; Schorr, Jürgen ; Böhm, Benjamin ; Krüger, Christian ; Peters, Steven
Art des Eintrags: Zweitveröffentlichung
Titel: Machine learning–based analysis of in-cylinder flow fields to predict combustion engine performance
Sprache: Englisch
Publikationsjahr: 21 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: London
Verlag: SAGE Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Engine Research
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00016051
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16051
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Cycle-to-cycle variations in an optically accessible four-stroke direct injection spark-ignition gasoline engine are investigated using high-speed scanning particle image velocimetry and in-cylinder pressure measurements. Particle image velocimetry allows to measure in-cylinder flow fields at high spatial and temporal resolution. Binary classifiers are used to predict combustion cycles of high indicated mean effective pressure based on in-cylinder flow features and engineered tumble features obtained during the intake and the compression stroke. Basic in-cylinder flow features of the mid-cylinder plane are sufficient to predict combustion cycles of high indicated mean effective pressure as early as 180 degree crank angle before the top dead center at 0 degree crank angle. Engineered characteristic tumble features derived from the flow field are not superior to the basic flow features. The results are independent of the tested machine learning method (multilayer perceptron and boosted decision trees) and robust to hyper-parameter selection.

Freie Schlagworte: Gasoline combustion engine, cycle-to-cycle variations, high-speed scanning particle image velocimetry, binary classifier, feature importance, neural network
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-160511
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Reaktive Strömungen und Messtechnik (RSM)
Hinterlegungsdatum: 21 Mai 2024 09:07
Letzte Änderung: 22 Mai 2024 06:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen