TU Darmstadt / ULB / TUbiblio

Pinecone-Inspired Humidity-Responsive Paper Actuators with Bilayer Structure

Seelinger, David ; Georges, Hussam ; Schäfer, Jan-Lukas ; Huong, Jasmin ; Tajima, Rena ; Mittelstedt, Christan ; Biesalski, Markus (2024)
Pinecone-Inspired Humidity-Responsive Paper Actuators with Bilayer Structure.
In: Polymers, 16 (10)
doi: 10.3390/polym16101402
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper–carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper–polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Seelinger, David ; Georges, Hussam ; Schäfer, Jan-Lukas ; Huong, Jasmin ; Tajima, Rena ; Mittelstedt, Christan ; Biesalski, Markus
Art des Eintrags: Bibliographie
Titel: Pinecone-Inspired Humidity-Responsive Paper Actuators with Bilayer Structure
Sprache: Englisch
Publikationsjahr: 15 Mai 2024
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Polymers
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 10
Kollation: 18 Seiten
DOI: 10.3390/polym16101402
Kurzbeschreibung (Abstract):

Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper–carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper–polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter.

Freie Schlagworte: bio composite, hygroexpansion, cellulose-based actuator, carboxymethyl cellulose
ID-Nummer: Artikel-ID: 1402
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Konstruktiven Leichtbau und Bauweisen-KLuB (2023 umbenannt in Leichtbau und Strukturmechanik (LSM))
07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie > Makromolekulare Chemie und Papierchemie
Hinterlegungsdatum: 13 Sep 2024 07:09
Letzte Änderung: 13 Sep 2024 07:09
PPN: 521507871
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen