TU Darmstadt / ULB / TUbiblio

Influence of Sampling Methods on the Accuracy of Machine Learning Predictions Used for Strain-Dependent Slope Stability

Shakya, Sudan ; Schmüdderich, Christoph ; Machaček, Jan ; Prada-Sarmiento, Luis Felipe ; Wichtmann, Torsten (2024)
Influence of Sampling Methods on the Accuracy of Machine Learning Predictions Used for Strain-Dependent Slope Stability.
In: Geosciences, 2024, 14 (2)
doi: 10.26083/tuprints-00027161
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Supervised machine learning (ML) techniques have been widely used in various geotechnical applications. While much attention is given to the ML techniques and the specific geotechnical problem being addressed, the influence of sampling methods on ML performance has received relatively less scrutiny. This study applies supervised ML to the strain-dependent slope stability (SDSS) method for the prediction of the factor of safety (FoS) using hypoplasticity. It delves into different sampling strategies for training the ML model, emphasizing predictions of soil behavior in lower stress ranges. A novel sampling method is introduced to ensure a more representative distribution of samples in these ranges, which is challenging to achieve through traditional sampling approaches. The ML models were trained using traditional and modified sampling methods. Subsequently, slope stability analyses using SDSS were conducted with ML models trained from six different sampling methods. The results illustrate the impact of sampling methods on the FoS. Besides a noticeable improvement in predictions of shear stresses within the lower stress ranges, a decisive effect on the overall FoS was observed as well.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Shakya, Sudan ; Schmüdderich, Christoph ; Machaček, Jan ; Prada-Sarmiento, Luis Felipe ; Wichtmann, Torsten
Art des Eintrags: Zweitveröffentlichung
Titel: Influence of Sampling Methods on the Accuracy of Machine Learning Predictions Used for Strain-Dependent Slope Stability
Sprache: Englisch
Publikationsjahr: 14 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 5 Februar 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Geosciences
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 2
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00027161
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27161
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Supervised machine learning (ML) techniques have been widely used in various geotechnical applications. While much attention is given to the ML techniques and the specific geotechnical problem being addressed, the influence of sampling methods on ML performance has received relatively less scrutiny. This study applies supervised ML to the strain-dependent slope stability (SDSS) method for the prediction of the factor of safety (FoS) using hypoplasticity. It delves into different sampling strategies for training the ML model, emphasizing predictions of soil behavior in lower stress ranges. A novel sampling method is introduced to ensure a more representative distribution of samples in these ranges, which is challenging to achieve through traditional sampling approaches. The ML models were trained using traditional and modified sampling methods. Subsequently, slope stability analyses using SDSS were conducted with ML models trained from six different sampling methods. The results illustrate the impact of sampling methods on the FoS. Besides a noticeable improvement in predictions of shear stresses within the lower stress ranges, a decisive effect on the overall FoS was observed as well.

Freie Schlagworte: machine learning, hypoplasticity, sampling, strain-dependent slope stability
ID-Nummer: Artikel-ID: 44
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-271616
Zusätzliche Informationen:

This article belongs to the Special Issue Benchmarks of AI in Geotechnics and Tunnelling

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geotechnik
Hinterlegungsdatum: 14 Mai 2024 13:42
Letzte Änderung: 15 Mai 2024 14:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen