TU Darmstadt / ULB / TUbiblio

Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach

Schmitz, Benedikt ; Scheuren, Stefan (2024)
Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach.
In: Journal of Nuclear Engineering, 2024, 5 (2)
doi: 10.26083/tuprints-00027131
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The development of compact neutron sources for applications is extensive and features many approaches. For ion-based approaches, several projects with different parameters exist. This article focuses on ion-based neutron production below the spallation barrier for proton and deuteron beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model makes it possible to compare different ion-based neutron source concepts against each other quickly. This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simulations) and deep neural networks. It is the first time a model of this kind has been developed. With this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Schmitz, Benedikt ; Scheuren, Stefan
Art des Eintrags: Zweitveröffentlichung
Titel: Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach
Sprache: Englisch
Publikationsjahr: 14 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 31 März 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Nuclear Engineering
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00027131
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27131
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The development of compact neutron sources for applications is extensive and features many approaches. For ion-based approaches, several projects with different parameters exist. This article focuses on ion-based neutron production below the spallation barrier for proton and deuteron beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model makes it possible to compare different ion-based neutron source concepts against each other quickly. This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simulations) and deep neural networks. It is the first time a model of this kind has been developed. With this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed.

Freie Schlagworte: neutron, thick target yield, artificial neural network, modeling, Monte Carlo, bootstrapping
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-271315
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Kernphysik
Hinterlegungsdatum: 14 Mai 2024 13:59
Letzte Änderung: 16 Mai 2024 15:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen