Schmitz, Benedikt ; Scheuren, Stefan (2024)
Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach.
In: Journal of Nuclear Engineering, 2024, 5 (2)
doi: 10.26083/tuprints-00027131
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The development of compact neutron sources for applications is extensive and features many approaches. For ion-based approaches, several projects with different parameters exist. This article focuses on ion-based neutron production below the spallation barrier for proton and deuteron beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model makes it possible to compare different ion-based neutron source concepts against each other quickly. This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simulations) and deep neural networks. It is the first time a model of this kind has been developed. With this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Schmitz, Benedikt ; Scheuren, Stefan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach |
Sprache: | Englisch |
Publikationsjahr: | 14 Mai 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 31 März 2024 |
Ort der Erstveröffentlichung: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Nuclear Engineering |
Jahrgang/Volume einer Zeitschrift: | 5 |
(Heft-)Nummer: | 2 |
DOI: | 10.26083/tuprints-00027131 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/27131 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | The development of compact neutron sources for applications is extensive and features many approaches. For ion-based approaches, several projects with different parameters exist. This article focuses on ion-based neutron production below the spallation barrier for proton and deuteron beams with arbitrary energy distributions with kinetic energies from 3 MeV to 97 MeV. This model makes it possible to compare different ion-based neutron source concepts against each other quickly. This contribution derives a predictive model using Monte Carlo simulations (an order of 50,000 simulations) and deep neural networks. It is the first time a model of this kind has been developed. With this model, lengthy Monte Carlo simulations, which individually take a long time to complete, can be circumvented. A prediction of neutron spectra then takes some milliseconds, which enables fast optimization and comparison. The models’ shortcomings for low-energy neutrons (<0.1 MeV) and the cut-off prediction uncertainty (±3 MeV) are addressed, and mitigation strategies are proposed. |
Freie Schlagworte: | neutron, thick target yield, artificial neural network, modeling, Monte Carlo, bootstrapping |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-271315 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Kernphysik |
Hinterlegungsdatum: | 14 Mai 2024 13:59 |
Letzte Änderung: | 16 Mai 2024 15:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach. (deposited 14 Mai 2024 13:59) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |