TU Darmstadt / ULB / TUbiblio

Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses

Schulze, Kai ; Weber, Ulrich ; Schuy, Christoph ; Durante, Marco ; Guzmán, Carlos Alberto (2024)
Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses.
In: Pharmaceutics, 2024, 16 (4)
doi: 10.26083/tuprints-00027129
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Schulze, Kai ; Weber, Ulrich ; Schuy, Christoph ; Durante, Marco ; Guzmán, Carlos Alberto
Art des Eintrags: Zweitveröffentlichung
Titel: Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses
Sprache: Englisch
Publikationsjahr: 14 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 27 März 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Pharmaceutics
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 4
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00027129
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27129
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.

Freie Schlagworte: influenza, vaccination, gamma rays, heavy ions
ID-Nummer: Artikel-ID: 465
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-271292
Zusätzliche Informationen:

This article belongs to the Special Issue Emerging Pharmaceutical Strategies against Infectious Diseases

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 14 Mai 2024 14:00
Letzte Änderung: 16 Mai 2024 15:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen