TU Darmstadt / ULB / TUbiblio

Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road

Johannes, Ludger ; Klann, Michael ; Koeppl, Heinz ; Reuss, Matthias (2024)
Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road.
In: PLoS ONE, 2012, 7 (1)
doi: 10.26083/tuprints-00026930
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Johannes, Ludger ; Klann, Michael ; Koeppl, Heinz ; Reuss, Matthias
Art des Eintrags: Zweitveröffentlichung
Titel: Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road
Sprache: Deutsch
Publikationsjahr: 13 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2012
Ort der Erstveröffentlichung: San Francisco, Calif.
Verlag: PLoS
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PLoS ONE
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 1
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00026930
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26930
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.

ID-Nummer: Artikel-ID: e29645
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-269308
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 13 Mai 2024 09:37
Letzte Änderung: 09 Aug 2024 06:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen