TU Darmstadt / ULB / TUbiblio

Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism

Kaster, Marvin ; Czappa, Fabian ; Butz-Ostendorf, Markus ; Wolf, Felix (2024)
Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism.
In: Frontiers in Neuroinformatics, 2024, 18
doi: 10.26083/tuprints-00027314
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Memory formation is usually associated with Hebbian learning and synaptic plasticity, which changes the synaptic strengths but omits structural changes. A recent study suggests that structural plasticity can also lead to silent memory engrams, reproducing a conditioned learning paradigm with neuron ensembles. However, this study is limited by its way of synapse formation, enabling the formation of only one memory engram. Overcoming this, our model allows the formation of many engrams simultaneously while retaining high neurophysiological accuracy, e.g., as found in cortical columns. We achieve this by substituting the random synapse formation with the Model of Structural Plasticity. As a homeostatic model, neurons regulate their activity by growing and pruning synaptic elements based on their current activity. Utilizing synapse formation based on the Euclidean distance between the neurons with a scalable algorithm allows us to easily simulate 4 million neurons with 343 memory engrams. These engrams do not interfere with one another by default, yet we can change the simulation parameters to form long-reaching associations. Our model's analysis shows that homeostatic engram formation requires a certain spatiotemporal order of events. It predicts that synaptic pruning precedes and enables synaptic engram formation and that it does not occur as a mere compensatory response to enduring synapse potentiation as in Hebbian plasticity with synaptic scaling. Our model paves the way for simulations addressing further inquiries, ranging from memory chains and hierarchies to complex memory systems comprising areas with different learning mechanisms.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kaster, Marvin ; Czappa, Fabian ; Butz-Ostendorf, Markus ; Wolf, Felix
Art des Eintrags: Zweitveröffentlichung
Titel: Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism
Sprache: Englisch
Publikationsjahr: 13 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 19 April 2024
Ort der Erstveröffentlichung: Lausanne
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Neuroinformatics
Jahrgang/Volume einer Zeitschrift: 18
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00027314
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27314
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Memory formation is usually associated with Hebbian learning and synaptic plasticity, which changes the synaptic strengths but omits structural changes. A recent study suggests that structural plasticity can also lead to silent memory engrams, reproducing a conditioned learning paradigm with neuron ensembles. However, this study is limited by its way of synapse formation, enabling the formation of only one memory engram. Overcoming this, our model allows the formation of many engrams simultaneously while retaining high neurophysiological accuracy, e.g., as found in cortical columns. We achieve this by substituting the random synapse formation with the Model of Structural Plasticity. As a homeostatic model, neurons regulate their activity by growing and pruning synaptic elements based on their current activity. Utilizing synapse formation based on the Euclidean distance between the neurons with a scalable algorithm allows us to easily simulate 4 million neurons with 343 memory engrams. These engrams do not interfere with one another by default, yet we can change the simulation parameters to form long-reaching associations. Our model's analysis shows that homeostatic engram formation requires a certain spatiotemporal order of events. It predicts that synaptic pruning precedes and enables synaptic engram formation and that it does not occur as a mere compensatory response to enduring synapse potentiation as in Hebbian plasticity with synaptic scaling. Our model paves the way for simulations addressing further inquiries, ranging from memory chains and hierarchies to complex memory systems comprising areas with different learning mechanisms.

Freie Schlagworte: learning, memory, homeostatic plasticity, structural plasticity, scalable
ID-Nummer: Artikel-ID: 1323203
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-273142
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Hinterlegungsdatum: 13 Mai 2024 13:31
Letzte Änderung: 16 Mai 2024 15:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen