TU Darmstadt / ULB / TUbiblio

‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators

Papin, Jason A. ; Hafner, Marc ; Koeppl, Heinz ; Hasler, Martin ; Wagner, Andreas (2024)
‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators.
In: PLoS Computational Biology, 2009, 5 (10)
doi: 10.26083/tuprints-00026926
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’ combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and different parameter sets.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Papin, Jason A. ; Hafner, Marc ; Koeppl, Heinz ; Hasler, Martin ; Wagner, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: ‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators
Sprache: Englisch
Publikationsjahr: 13 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2009
Ort der Erstveröffentlichung: San Francisco, Calif.
Verlag: PLoS
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PLoS Computational Biology
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 10
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00026926
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26926
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’ combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and different parameter sets.

ID-Nummer: Artikel-ID: e1000534
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-269264
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Hinterlegungsdatum: 13 Mai 2024 09:58
Letzte Änderung: 09 Aug 2024 06:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen