TU Darmstadt / ULB / TUbiblio

Visual Exploration and Analysis of Simulation and Testing Data in Motor Engineering

Louis, Patrick ; Cibulski, Lena ; Suschnigg, Josef ; Marth, Edmund ; Mitterhofer, Hubert ; Kohlhammer, Jörn ; Schreck, Tobias ; Mutlu, Belgin (2024)
Visual Exploration and Analysis of Simulation and Testing Data in Motor Engineering.
In: IEEE Computer Graphics and Applications
doi: 10.1109/MCG.2024.3392969
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

End-of-line tests and defect detection are vital for ensuring the reliability of electric motors. However, automated defect detection methods, e.g., data-driven approaches, face challenges due to the limited availability of real data from failed motors. Simulated data, though beneficial, lacks the complexity of real motors, impacting the performance of these methods when applied to actual observations. To tackle this challenge, we introduce a visual analysis tool designed to facilitate the analysis of measured and simulated data, presented in the form of time series data. This tool helps identify domain-invariant features and evaluate simulation data accuracy, assisting in selecting training data for reliable automated defect detection in real-world scenarios. The main contribution of this work is a design proposal based on visual design principles, specifically tailored to address the unique requirements of electric motor professionals. The visual design is validated by findings from a think-aloud study with specialized engineers.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Louis, Patrick ; Cibulski, Lena ; Suschnigg, Josef ; Marth, Edmund ; Mitterhofer, Hubert ; Kohlhammer, Jörn ; Schreck, Tobias ; Mutlu, Belgin
Art des Eintrags: Bibliographie
Titel: Visual Exploration and Analysis of Simulation and Testing Data in Motor Engineering
Sprache: Englisch
Publikationsjahr: 2024
Ort: Piscataway, NY
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Computer Graphics and Applications
Kollation: 13 Seiten
DOI: 10.1109/MCG.2024.3392969
Kurzbeschreibung (Abstract):

End-of-line tests and defect detection are vital for ensuring the reliability of electric motors. However, automated defect detection methods, e.g., data-driven approaches, face challenges due to the limited availability of real data from failed motors. Simulated data, though beneficial, lacks the complexity of real motors, impacting the performance of these methods when applied to actual observations. To tackle this challenge, we introduce a visual analysis tool designed to facilitate the analysis of measured and simulated data, presented in the form of time series data. This tool helps identify domain-invariant features and evaluate simulation data accuracy, assisting in selecting training data for reliable automated defect detection in real-world scenarios. The main contribution of this work is a design proposal based on visual design principles, specifically tailored to address the unique requirements of electric motor professionals. The visual design is validated by findings from a think-aloud study with specialized engineers.

Freie Schlagworte: Exploratory visualization, Defect detection, Time series analysis
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 17 Mai 2024 09:18
Letzte Änderung: 03 Jun 2024 09:36
PPN: 518773558
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen