TU Darmstadt / ULB / TUbiblio

Simulation of DLA grating structures in the frequency domain

Egenolf, T. ; Boine-Frankenheim, O. ; Niedermayer, U. (2017)
Simulation of DLA grating structures in the frequency domain.
In: Journal of Physics: Conference Series, 874 (1)
doi: 10.1088/1742-6596/874/1/012040
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Dielectric laser accelerators (DLA) driven by ultrashort laser pulses can reach orders of magnitude larger gradients than contemporary RF electron accelerators. A new implemented field solver based on the finite element method in the frequency domain allows the efficient calculation of the structure constant, i.e. the ratio of energy gain to laser peak amplitude. We present the maximization of this ratio as a parameter study looking at a single grating period only. Based on this optimized shape the entire design of a beta-matched grating is completed in an iterative process. The period length of a beta-matched grating increases due to the increasing velocity of the electron when a subrelativistic beam is accelerated. The determination of the optimal length of each grating period thus requires the knowledge of the energy gain within all so far crossed periods. Furthermore, we outline to reverse the excitation in the presented solver for beam coupling impedance calculations and an estimation of the beam loading intensity limit.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Egenolf, T. ; Boine-Frankenheim, O. ; Niedermayer, U.
Art des Eintrags: Bibliographie
Titel: Simulation of DLA grating structures in the frequency domain
Sprache: Englisch
Publikationsjahr: 2017
Ort: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Conference Series
Jahrgang/Volume einer Zeitschrift: 874
(Heft-)Nummer: 1
Kollation: 5 Seiten
DOI: 10.1088/1742-6596/874/1/012040
Zugehörige Links:
Kurzbeschreibung (Abstract):

Dielectric laser accelerators (DLA) driven by ultrashort laser pulses can reach orders of magnitude larger gradients than contemporary RF electron accelerators. A new implemented field solver based on the finite element method in the frequency domain allows the efficient calculation of the structure constant, i.e. the ratio of energy gain to laser peak amplitude. We present the maximization of this ratio as a parameter study looking at a single grating period only. Based on this optimized shape the entire design of a beta-matched grating is completed in an iterative process. The period length of a beta-matched grating increases due to the increasing velocity of the electron when a subrelativistic beam is accelerated. The determination of the optimal length of each grating period thus requires the knowledge of the energy gain within all so far crossed periods. Furthermore, we outline to reverse the excitation in the presented solver for beam coupling impedance calculations and an estimation of the beam loading intensity limit.

ID-Nummer: Artikel-ID: 012040
Zusätzliche Informationen:

Erstveröffentlichung; 8th International Particle Accelerator Conference 14.-19.05.2017, Copenhagen, Denmark

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 13 Mai 2024 07:58
Letzte Änderung: 20 Aug 2024 06:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen