TU Darmstadt / ULB / TUbiblio

Anomaly Detection in Smart Environments: A Comprehensive Survey

Fährmann, Daniel ; Martín, Laura ; Sánchez, Luis ; Damer, Naser (2024)
Anomaly Detection in Smart Environments: A Comprehensive Survey.
In: IEEE Access, 12
doi: 10.1109/ACCESS.2024.3395051
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Anomaly detection is a critical task in ensuring the security and safety of infrastructure and individuals in smart environments. This paper provides a comprehensive analysis of recent anomaly detection solutions in data streams supporting smart environments, with a specific focus on multivariate time series anomaly detection in various environments, such as smart home, smart transport, and smart industry. The aim is to offer a thorough overview of the current state-of-the-art in anomaly detection techniques applicable to these environments. This includes an examination of publicly available datasets suitable for developing these techniques. The survey is designed to inform future research and practical applications in the field, serving as a valuable resource for researchers and practitioners. It not only reviews a range of state-of-the-art anomaly detection methods, from statistical and proximity-based to those adopting deep learning-methods but also covers fundamental aspects of anomaly detection. These aspects include the categorization of anomalies, detection scenarios, challenges associated, and evaluation metrics for assessing the techniques’ performance.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fährmann, Daniel ; Martín, Laura ; Sánchez, Luis ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: Anomaly Detection in Smart Environments: A Comprehensive Survey
Sprache: Englisch
Publikationsjahr: 29 April 2024
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Access
Jahrgang/Volume einer Zeitschrift: 12
DOI: 10.1109/ACCESS.2024.3395051
Kurzbeschreibung (Abstract):

Anomaly detection is a critical task in ensuring the security and safety of infrastructure and individuals in smart environments. This paper provides a comprehensive analysis of recent anomaly detection solutions in data streams supporting smart environments, with a specific focus on multivariate time series anomaly detection in various environments, such as smart home, smart transport, and smart industry. The aim is to offer a thorough overview of the current state-of-the-art in anomaly detection techniques applicable to these environments. This includes an examination of publicly available datasets suitable for developing these techniques. The survey is designed to inform future research and practical applications in the field, serving as a valuable resource for researchers and practitioners. It not only reviews a range of state-of-the-art anomaly detection methods, from statistical and proximity-based to those adopting deep learning-methods but also covers fundamental aspects of anomaly detection. These aspects include the categorization of anomalies, detection scenarios, challenges associated, and evaluation metrics for assessing the techniques’ performance.

Freie Schlagworte: Smart cities, Assistant systems, Security technologies, Smart environments, Smart factories
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 14 Mai 2024 11:44
Letzte Änderung: 14 Mai 2024 11:44
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen