TU Darmstadt / ULB / TUbiblio

Heterovalent Tin Alloying in Layered MA₃Sb₂I₉ Thin Films: Assessing the Origin of Enhanced Absorption and Self-Stabilizing Charge States

Weis, Andreas ; Ganswindt, Patrick ; Kaiser, Waldemar ; Illner, Hannah ; Maheu, Clément ; Glück, Nadja ; Dörflinger, Patrick ; Armer, Melina ; Dyakonov, Vladimir ; Hofmann, Jan P. ; Mosconi, Edoardo ; De Angelis, Filippo ; Bein, Thomas (2022)
Heterovalent Tin Alloying in Layered MA₃Sb₂I₉ Thin Films: Assessing the Origin of Enhanced Absorption and Self-Stabilizing Charge States.
In: The Journal of Physical Chemistry C, 126 (49)
doi: 10.1021/acs.jpcc.2c06106
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Heteroatom alloying of lead-free perovskite derivatives is a highly promising route to tailor their optoelectronic properties and stability for multiple applications. Here, we demonstrate the facile solution-based synthesis of Sn-alloyed layered MA₃Sb₂I₉ thin films by precursor engineering, combining acetate and halide salts. An increasing concentration of tin halides in different oxidation states leads to a strong boost in absorption over the whole visible spectrum. We demonstrate phase-pure synthesis and elucidate the heterovalent incorporation of Sn into the MA₃Sb₂I₉ lattice, proving the formation of additional electronic states in the bandgap by theoretical calculations. On this basis, we dissect the strong absorption increase into three components that we attribute to intervalence and heteroatom-induced interband absorption. Finally, we show the charge-stabilizing effect of the system through robustness toward precursors in mixed oxidation states and trace the improved ambient stability of this material back to this feature.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Weis, Andreas ; Ganswindt, Patrick ; Kaiser, Waldemar ; Illner, Hannah ; Maheu, Clément ; Glück, Nadja ; Dörflinger, Patrick ; Armer, Melina ; Dyakonov, Vladimir ; Hofmann, Jan P. ; Mosconi, Edoardo ; De Angelis, Filippo ; Bein, Thomas
Art des Eintrags: Bibliographie
Titel: Heterovalent Tin Alloying in Layered MA₃Sb₂I₉ Thin Films: Assessing the Origin of Enhanced Absorption and Self-Stabilizing Charge States
Sprache: Englisch
Publikationsjahr: November 2022
Ort: Washington, DC
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Physical Chemistry C
Jahrgang/Volume einer Zeitschrift: 126
(Heft-)Nummer: 49
DOI: 10.1021/acs.jpcc.2c06106
Kurzbeschreibung (Abstract):

Heteroatom alloying of lead-free perovskite derivatives is a highly promising route to tailor their optoelectronic properties and stability for multiple applications. Here, we demonstrate the facile solution-based synthesis of Sn-alloyed layered MA₃Sb₂I₉ thin films by precursor engineering, combining acetate and halide salts. An increasing concentration of tin halides in different oxidation states leads to a strong boost in absorption over the whole visible spectrum. We demonstrate phase-pure synthesis and elucidate the heterovalent incorporation of Sn into the MA₃Sb₂I₉ lattice, proving the formation of additional electronic states in the bandgap by theoretical calculations. On this basis, we dissect the strong absorption increase into three components that we attribute to intervalence and heteroatom-induced interband absorption. Finally, we show the charge-stabilizing effect of the system through robustness toward precursors in mixed oxidation states and trace the improved ambient stability of this material back to this feature.

Freie Schlagworte: Absorption, Anions, Perovskites, Precursors, Thin films
Zusätzliche Informationen:

Published as part of The Journal of Physical Chemistry virtual special issue “Horst Weller Festschrift”.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 10 Mai 2024 06:35
Letzte Änderung: 10 Mai 2024 06:35
PPN: 518180514
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen