TU Darmstadt / ULB / TUbiblio

Non-symmetric isogeometric FEM-BEM couplings

Elasmi, Mehdi ; Erath, Christoph ; Kurz, Stefan (2021)
Non-symmetric isogeometric FEM-BEM couplings.
In: Advances in Computational Mathematics, 47 (5)
doi: 10.1007/s10444-021-09886-3
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting of two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide a priori error estimates. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Elasmi, Mehdi ; Erath, Christoph ; Kurz, Stefan
Art des Eintrags: Bibliographie
Titel: Non-symmetric isogeometric FEM-BEM couplings
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advances in Computational Mathematics
Jahrgang/Volume einer Zeitschrift: 47
(Heft-)Nummer: 5
DOI: 10.1007/s10444-021-09886-3
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting of two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide a priori error estimates. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results.

Freie Schlagworte: Finite element method, Boundary element method, Non-symmetric coupling, Isogeometric analysis, Non-linear operators, Laplacian interface problem, Boundary value problems, Multiple domains, Well-posedness, a priori estimate, Super-convergence, Electromagnetics, Electric machines
ID-Nummer: Artikel-ID: 61
Zusätzliche Informationen:

Erstveröffentlichung; Mathematics Subject Classification (2010): 65N12 - 65N30 - 65N38 - 78M10 - 78M15

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 08 Mai 2024 11:54
Letzte Änderung: 08 Mai 2024 11:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen