TU Darmstadt / ULB / TUbiblio

Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco

González-Romero, Adolfo ; González-Flórez, Cristina ; Panta, Agnesh ; Yus-Díez, Jesús ; Reche, Cristina ; Córdoba, Patricia ; Moreno, Natalia ; Alastuey, Andres ; Kandler, Konrad ; Klose, Martina ; Baldo, Clarissa ; Clark, Roger N. ; Shi, Zongbo ; Querol, Xavier ; Pérez García-Pando, Carlos (2023)
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco.
In: Atmospheric Chemistry and Physics, 23 (24)
doi: 10.5194/acp-23-15815-2023
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The effects of desert dust upon climate and ecosystems depend strongly on its particle size and size-resolved mineralogical composition. However, there is very limited quantitative knowledge on the particle size and composition of the parent sediments along with their variability within dust-source regions, particularly in dust emission hotspots. The lower Drâa Valley, an inland drainage basin and dust hotspot region located in the Moroccan Sahara, was chosen for a comprehensive analysis of sediment particle size and mineralogy. Different sediment type samples (n= 42) were collected, including paleo-sediments, paved surfaces, crusts, and dunes, and analysed for particle-size distribution (minimally and fully dispersed samples) and mineralogy. Furthermore, Fe sequential wet extraction was carried out to characterise the modes of occurrence of Fe, including Fe in Fe (oxyhydr)oxides, mainly from goethite and hematite, which are key to dust radiative effects; the poorly crystalline pool of Fe (readily exchangeable ionic Fe and Fe in nano-Fe oxides), relevant to dust impacts upon ocean biogeochemistry; and structural Fe. Results yield a conceptual model where both particle size and mineralogy are segregated by transport and deposition of sediments during runoff of water across the basin and by the precipitation of salts, which causes a sedimentary fractionation. The proportion of coarser particles enriched in quartz is higher in the highlands, while that of finer particles rich in clay, carbonates, and Fe oxides is higher in the lowland dust emission hotspots. There, when water ponds and evaporates, secondary carbonates and salts precipitate, and the clays are enriched in readily exchangeable ionic Fe, due to sorption of dissolved Fe by illite. The results differ from currently available mineralogical atlases and highlight the need for observationally constrained global high-resolution mineralogical data for mineral-speciated dust modelling. The dataset obtained represents an important resource for future evaluation of surface mineralogy retrievals from spaceborne spectroscopy.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): González-Romero, Adolfo ; González-Flórez, Cristina ; Panta, Agnesh ; Yus-Díez, Jesús ; Reche, Cristina ; Córdoba, Patricia ; Moreno, Natalia ; Alastuey, Andres ; Kandler, Konrad ; Klose, Martina ; Baldo, Clarissa ; Clark, Roger N. ; Shi, Zongbo ; Querol, Xavier ; Pérez García-Pando, Carlos
Art des Eintrags: Bibliographie
Titel: Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Sprache: Englisch
Publikationsjahr: 22 Dezember 2023
Ort: Göttingen
Verlag: Copernicus Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Atmospheric Chemistry and Physics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 24
DOI: 10.5194/acp-23-15815-2023
Zugehörige Links:
Kurzbeschreibung (Abstract):

The effects of desert dust upon climate and ecosystems depend strongly on its particle size and size-resolved mineralogical composition. However, there is very limited quantitative knowledge on the particle size and composition of the parent sediments along with their variability within dust-source regions, particularly in dust emission hotspots. The lower Drâa Valley, an inland drainage basin and dust hotspot region located in the Moroccan Sahara, was chosen for a comprehensive analysis of sediment particle size and mineralogy. Different sediment type samples (n= 42) were collected, including paleo-sediments, paved surfaces, crusts, and dunes, and analysed for particle-size distribution (minimally and fully dispersed samples) and mineralogy. Furthermore, Fe sequential wet extraction was carried out to characterise the modes of occurrence of Fe, including Fe in Fe (oxyhydr)oxides, mainly from goethite and hematite, which are key to dust radiative effects; the poorly crystalline pool of Fe (readily exchangeable ionic Fe and Fe in nano-Fe oxides), relevant to dust impacts upon ocean biogeochemistry; and structural Fe. Results yield a conceptual model where both particle size and mineralogy are segregated by transport and deposition of sediments during runoff of water across the basin and by the precipitation of salts, which causes a sedimentary fractionation. The proportion of coarser particles enriched in quartz is higher in the highlands, while that of finer particles rich in clay, carbonates, and Fe oxides is higher in the lowland dust emission hotspots. There, when water ponds and evaporates, secondary carbonates and salts precipitate, and the clays are enriched in readily exchangeable ionic Fe, due to sorption of dissolved Fe by illite. The results differ from currently available mineralogical atlases and highlight the need for observationally constrained global high-resolution mineralogical data for mineral-speciated dust modelling. The dataset obtained represents an important resource for future evaluation of surface mineralogy retrievals from spaceborne spectroscopy.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Atmosphärisches Aerosol
Hinterlegungsdatum: 08 Mai 2024 07:16
Letzte Änderung: 08 Mai 2024 09:55
PPN: 51802234X
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen