Elmasry, Ramez M. ; Abd El Ghany, Mohamed A. ; Salem, Mohammed A.-M. ; Fahmy, Omar M. (2024)
MultiWave-Net: An Optimized Spatiotemporal Network for Abnormal Action Recognition Using Wavelet-Based Channel Augmentation.
In: AI, 2024, 5 (1)
doi: 10.26083/tuprints-00027246
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Human behavior is regarded as one of the most complex notions present nowadays, due to the large magnitude of possibilities. These behaviors and actions can be distinguished as normal and abnormal. However, abnormal behavior is a vast spectrum, so in this work, abnormal behavior is regarded as human aggression or in another context when car accidents occur on the road. As this behavior can negatively affect the surrounding traffic participants, such as vehicles and other pedestrians, it is crucial to monitor such behavior. Given the current prevalent spread of cameras everywhere with different types, they can be used to classify and monitor such behavior. Accordingly, this work proposes a new optimized model based on a novel integrated wavelet-based channel augmentation unit for classifying human behavior in various scenes, having a total number of trainable parameters of 5.3 m with an average inference time of 0.09 s. The model has been trained and evaluated on four public datasets: Real Live Violence Situations (RLVS), Highway Incident Detection (HWID), Movie Fights, and Hockey Fights. The proposed technique achieved accuracies in the range of 92% to 99.5% across the used benchmark datasets. Comprehensive analysis and comparisons between different versions of the model and the state-of-the-art have been performed to confirm the model’s performance in terms of accuracy and efficiency. The proposed model has higher accuracy with an average of 4.97%, and higher efficiency by reducing the number of parameters by around 139.1 m compared to other models trained and tested on the same benchmark datasets.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Elmasry, Ramez M. ; Abd El Ghany, Mohamed A. ; Salem, Mohammed A.-M. ; Fahmy, Omar M. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | MultiWave-Net: An Optimized Spatiotemporal Network for Abnormal Action Recognition Using Wavelet-Based Channel Augmentation |
Sprache: | Englisch |
Publikationsjahr: | 7 Mai 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 24 Januar 2024 |
Ort der Erstveröffentlichung: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | AI |
Jahrgang/Volume einer Zeitschrift: | 5 |
(Heft-)Nummer: | 1 |
DOI: | 10.26083/tuprints-00027246 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/27246 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Human behavior is regarded as one of the most complex notions present nowadays, due to the large magnitude of possibilities. These behaviors and actions can be distinguished as normal and abnormal. However, abnormal behavior is a vast spectrum, so in this work, abnormal behavior is regarded as human aggression or in another context when car accidents occur on the road. As this behavior can negatively affect the surrounding traffic participants, such as vehicles and other pedestrians, it is crucial to monitor such behavior. Given the current prevalent spread of cameras everywhere with different types, they can be used to classify and monitor such behavior. Accordingly, this work proposes a new optimized model based on a novel integrated wavelet-based channel augmentation unit for classifying human behavior in various scenes, having a total number of trainable parameters of 5.3 m with an average inference time of 0.09 s. The model has been trained and evaluated on four public datasets: Real Live Violence Situations (RLVS), Highway Incident Detection (HWID), Movie Fights, and Hockey Fights. The proposed technique achieved accuracies in the range of 92% to 99.5% across the used benchmark datasets. Comprehensive analysis and comparisons between different versions of the model and the state-of-the-art have been performed to confirm the model’s performance in terms of accuracy and efficiency. The proposed model has higher accuracy with an average of 4.97%, and higher efficiency by reducing the number of parameters by around 139.1 m compared to other models trained and tested on the same benchmark datasets. |
Freie Schlagworte: | abnormal actions, anomaly, accidents, convolutional neural network, convolutional LSTM, channel augmentation, fights, recognition, wavelet transform, violence |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-272460 |
Zusätzliche Informationen: | This article belongs to the Special Issue Artificial Intelligence-Based Image Processing and Computer Vision |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Integrierte Elektronische Systeme (IES) |
Hinterlegungsdatum: | 07 Mai 2024 12:49 |
Letzte Änderung: | 13 Mai 2024 08:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- MultiWave-Net: An Optimized Spatiotemporal Network for Abnormal Action Recognition Using Wavelet-Based Channel Augmentation. (deposited 07 Mai 2024 12:49) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |