TU Darmstadt / ULB / TUbiblio

Learning with privileged and sensitive information: a gradient-boosting approach

Yan, Siwen ; Odom, Phillip ; Pasunuri, Rahul ; Kersting, Kristian ; Natarajan, Sriraam (2024)
Learning with privileged and sensitive information: a gradient-boosting approach.
In: Frontiers in Artificial Intelligence, 2023, 6
doi: 10.26083/tuprints-00027142
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We consider the problem of learning with sensitive features under the privileged information setting where the goal is to learn a classifier that uses features not available (or too sensitive to collect) at test/deployment time to learn a better model at training time. We focus on tree-based learners, specifically gradient-boosted decision trees for learning with privileged information. Our methods use privileged features as knowledge to guide the algorithm when learning from fully observed (usable) features. We derive the theory, empirically validate the effectiveness of our algorithms, and verify them on standard fairness metrics.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Yan, Siwen ; Odom, Phillip ; Pasunuri, Rahul ; Kersting, Kristian ; Natarajan, Sriraam
Art des Eintrags: Zweitveröffentlichung
Titel: Learning with privileged and sensitive information: a gradient-boosting approach
Sprache: Englisch
Publikationsjahr: 7 Mai 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 13 November 2023
Ort der Erstveröffentlichung: Lausanne
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Artificial Intelligence
Jahrgang/Volume einer Zeitschrift: 6
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00027142
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27142
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We consider the problem of learning with sensitive features under the privileged information setting where the goal is to learn a classifier that uses features not available (or too sensitive to collect) at test/deployment time to learn a better model at training time. We focus on tree-based learners, specifically gradient-boosted decision trees for learning with privileged information. Our methods use privileged features as knowledge to guide the algorithm when learning from fully observed (usable) features. We derive the theory, empirically validate the effectiveness of our algorithms, and verify them on standard fairness metrics.

Freie Schlagworte: privileged information, fairness, gradient boosting, knowledge-based learning, sensitive features
ID-Nummer: Artikel-ID: 1260583
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-271423
Zusätzliche Informationen:

This article is part of the Research Topic: Knowledge-guided Learning and Decision-Making

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Künstliche Intelligenz und Maschinelles Lernen
Zentrale Einrichtungen
Zentrale Einrichtungen > hessian.AI - Hessisches Zentrum für Künstliche Intelligenz
Hinterlegungsdatum: 07 Mai 2024 13:17
Letzte Änderung: 08 Mai 2024 12:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen