TU Darmstadt / ULB / TUbiblio

A matter of performance and criticality: a review of rare-earth-based magnetocaloric intermetallic compounds for hydrogen liquefaction

Liu, Wei ; Gottschall, Tino ; Scheibel, Franziska ; Bykov, Eduard ; Aubert, Alex ; Fortunato, Nuno M. ; Beckmann, Benedikt ; Döring, Allan M. ; Zhang, Hongbin ; Skokov, Konstantin P. ; Gutfleisch, Oliver (2024)
A matter of performance and criticality: a review of rare-earth-based magnetocaloric intermetallic compounds for hydrogen liquefaction.
In: Journal of Alloys and Compounds
doi: 10.1016/j.jallcom.2024.174612
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The low efficiency of conventional liquefaction technologies based on the Joule-Thomson expansion makes liquid hydrogen currently not attractive enough for large-scale energy-related technologies that are important for the transition to a carbon-neutral society. Magnetocaloric hydrogen liquefaction has great potential to achieve higher efficiency and is therefore a crucial enabler for affordable liquid hydrogen. Cost-effective magnetocaloric materials with large magnetic entropy and adiabatic temperature changes in the temperature range of 77 ~ 20 K under commercially practicable magnetic fields are the foundation for the success of magnetocaloric hydrogen liquefaction. Heavy rare-earth-based magnetocaloric intermetallic compounds generally show excellent magnetocaloric performances, but the heavy rare-earth elements (Gd, Tb, Dy, Ho, Er, and Tm) are highly critical in resources. Yttrium and light rare-earth elements (La, Ce, Pr, and Nd) are relatively abundant, but their alloys generally show less excellent magnetocaloric properties. A dilemma appears: higher performance or lower criticality? In this review, we study how cryogenic temperature influences magnetocaloric performance by first reviewing heavy rare-earth-based intermetallic compounds. Next, we look at light rare-earth-based, “mixed” rare-earth-based, and Gd-based intermetallic compounds with the nature of the phase transition order taken into consideration, and summarize ways to resolve the dilemma.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Liu, Wei ; Gottschall, Tino ; Scheibel, Franziska ; Bykov, Eduard ; Aubert, Alex ; Fortunato, Nuno M. ; Beckmann, Benedikt ; Döring, Allan M. ; Zhang, Hongbin ; Skokov, Konstantin P. ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: A matter of performance and criticality: a review of rare-earth-based magnetocaloric intermetallic compounds for hydrogen liquefaction
Sprache: Englisch
Publikationsjahr: 1 Mai 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Alloys and Compounds
DOI: 10.1016/j.jallcom.2024.174612
Kurzbeschreibung (Abstract):

The low efficiency of conventional liquefaction technologies based on the Joule-Thomson expansion makes liquid hydrogen currently not attractive enough for large-scale energy-related technologies that are important for the transition to a carbon-neutral society. Magnetocaloric hydrogen liquefaction has great potential to achieve higher efficiency and is therefore a crucial enabler for affordable liquid hydrogen. Cost-effective magnetocaloric materials with large magnetic entropy and adiabatic temperature changes in the temperature range of 77 ~ 20 K under commercially practicable magnetic fields are the foundation for the success of magnetocaloric hydrogen liquefaction. Heavy rare-earth-based magnetocaloric intermetallic compounds generally show excellent magnetocaloric performances, but the heavy rare-earth elements (Gd, Tb, Dy, Ho, Er, and Tm) are highly critical in resources. Yttrium and light rare-earth elements (La, Ce, Pr, and Nd) are relatively abundant, but their alloys generally show less excellent magnetocaloric properties. A dilemma appears: higher performance or lower criticality? In this review, we study how cryogenic temperature influences magnetocaloric performance by first reviewing heavy rare-earth-based intermetallic compounds. Next, we look at light rare-earth-based, “mixed” rare-earth-based, and Gd-based intermetallic compounds with the nature of the phase transition order taken into consideration, and summarize ways to resolve the dilemma.

Freie Schlagworte: magnetocaloric effect, magnetism, magnetic materials, hydrogen liquefaction, rare-earth elements, phase transition
ID-Nummer: Artikel-ID: 174612
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 07 Mai 2024 06:27
Letzte Änderung: 07 Mai 2024 10:00
PPN: 517917483
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen