TU Darmstadt / ULB / TUbiblio

Holonomic quantum computing in symmetry-protected ground states of spin chains

Renes, Joseph M. ; Miyake, Akimasa ; Brennen, Gavin K. ; Bartlett, Stephen D. (2013)
Holonomic quantum computing in symmetry-protected ground states of spin chains.
In: New Journal of Physics, 15 (2)
doi: 10.1088/1367-2630/15/2/025020
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Renes, Joseph M. ; Miyake, Akimasa ; Brennen, Gavin K. ; Bartlett, Stephen D.
Art des Eintrags: Bibliographie
Titel: Holonomic quantum computing in symmetry-protected ground states of spin chains
Sprache: Englisch
Publikationsjahr: 14 Februar 2013
Ort: London
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 2
Kollation: 17 Seiten
DOI: 10.1088/1367-2630/15/2/025020
Zugehörige Links:
Kurzbeschreibung (Abstract):

While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.

ID-Nummer: Artikel-ID: 025020
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 02 Mai 2024 12:34
Letzte Änderung: 02 Mai 2024 12:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen