Möller, Marco ; Peixoto, Tiago P. (2015)
Maximum-entropy large-scale structures of Boolean networks optimized for criticality.
In: New Journal of Physics, 17 (4)
doi: 10.1088/1367-2630/17/4/043021
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We construct statistical ensembles of modular Boolean networks that are constrained to lie at the critical line between frozen and chaotic dynamic regimes. The ensembles are maximally random given the imposed constraints, and thus represent null models of critical networks. By varying the network density and the entropic cost associated with biased Boolean functions, the ensembles undergo several phase transitions. The observed structures range from fully random to several ordered ones, including a prominent core–periphery-like structure, and an ‘attenuated’ two-group structure, where the network is divided in two groups of nodes, and one of them has Boolean functions with very low sensitivity. This shows that such simple large-scale structures are the most likely to occur when optimizing for criticality, in the absence of any other constraint or competing optimization criteria.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2015 |
Autor(en): | Möller, Marco ; Peixoto, Tiago P. |
Art des Eintrags: | Bibliographie |
Titel: | Maximum-entropy large-scale structures of Boolean networks optimized for criticality |
Sprache: | Englisch |
Publikationsjahr: | 14 April 2015 |
Ort: | London |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | New Journal of Physics |
Jahrgang/Volume einer Zeitschrift: | 17 |
(Heft-)Nummer: | 4 |
Kollation: | 9 Seiten |
DOI: | 10.1088/1367-2630/17/4/043021 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We construct statistical ensembles of modular Boolean networks that are constrained to lie at the critical line between frozen and chaotic dynamic regimes. The ensembles are maximally random given the imposed constraints, and thus represent null models of critical networks. By varying the network density and the entropic cost associated with biased Boolean functions, the ensembles undergo several phase transitions. The observed structures range from fully random to several ordered ones, including a prominent core–periphery-like structure, and an ‘attenuated’ two-group structure, where the network is divided in two groups of nodes, and one of them has Boolean functions with very low sensitivity. This shows that such simple large-scale structures are the most likely to occur when optimizing for criticality, in the absence of any other constraint or competing optimization criteria. |
Freie Schlagworte: | Boolean networks, complex networks, evolved networks, criticality |
ID-Nummer: | Artikel-ID: 043021 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) |
Hinterlegungsdatum: | 02 Mai 2024 12:18 |
Letzte Änderung: | 02 Mai 2024 12:18 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Maximum-entropy large-scale structures of Boolean networks optimized for criticality. (deposited 22 Apr 2024 09:07)
- Maximum-entropy large-scale structures of Boolean networks optimized for criticality. (deposited 02 Mai 2024 12:18) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |