TU Darmstadt / ULB / TUbiblio

Clothoid fitting and geometric Hermite subdivision

Reif, Ulrich ; Weinmann, Andreas (2024)
Clothoid fitting and geometric Hermite subdivision.
In: Advances in Computational Mathematics, 2021, 47 (4)
doi: 10.26083/tuprints-00023484
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We consider geometric Hermite subdivision for planar curves, i.e., iteratively refining an input polygon with additional tangent or normal vector information sitting in the vertices. The building block for the (nonlinear) subdivision schemes we propose is based on clothoidal averaging, i.e., averaging w.r.t. locally interpolating clothoids, which are curves of linear curvature. To this end, we derive a new strategy to approximate Hermite interpolating clothoids. We employ the proposed approach to define the geometric Hermite analogues of the well-known Lane-Riesenfeld and four-point schemes. We present numerical results produced by the proposed schemes and discuss their features.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Reif, Ulrich ; Weinmann, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: Clothoid fitting and geometric Hermite subdivision
Sprache: Englisch
Publikationsjahr: 30 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Dordrecht
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advances in Computational Mathematics
Jahrgang/Volume einer Zeitschrift: 47
(Heft-)Nummer: 4
Kollation: 22 Seiten
DOI: 10.26083/tuprints-00023484
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23484
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We consider geometric Hermite subdivision for planar curves, i.e., iteratively refining an input polygon with additional tangent or normal vector information sitting in the vertices. The building block for the (nonlinear) subdivision schemes we propose is based on clothoidal averaging, i.e., averaging w.r.t. locally interpolating clothoids, which are curves of linear curvature. To this end, we derive a new strategy to approximate Hermite interpolating clothoids. We employ the proposed approach to define the geometric Hermite analogues of the well-known Lane-Riesenfeld and four-point schemes. We present numerical results produced by the proposed schemes and discuss their features.

Freie Schlagworte: Geometric Hermite subdivision, Non-linear subdivision, Circle-preserving scheme, Clothoid fitting, 2D curve design
ID-Nummer: Artikel-ID: 50
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-234847
Zusätzliche Informationen:

Mathematics Subject Classification 2010: 68U07 · 65D17

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Geometrie und Approximation
Hinterlegungsdatum: 30 Apr 2024 12:44
Letzte Änderung: 02 Mai 2024 09:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen