TU Darmstadt / ULB / TUbiblio

Model Decomposition and Stochastic Fragments

Petrov, Tatjana ; Ganguly, Arnab ; Koeppl, Heinz (2024)
Model Decomposition and Stochastic Fragments.
In: Electronic Notes in Theoretical Computer Science, 2012, 284
doi: 10.26083/tuprints-00026720
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper, we discuss a method for decomposition, abstraction and reconstruction of the stochastic semantics of rule-based systems with conserved number of agents. Abstraction is induced by counting fragments instead of the species, which are the standard entities of information in molecular signaling. The rule-set can be decomposed to smaller rule-sets, so that the fragment-based dynamics of the whole rule-set is exactly a composition of species-based dynamics of smaller rule-sets. The reconstruction of the transient species-based dynamics is possible for certain initial distributions. We show that, if all the rules in a rule set are reversible, the reconstruction of the species-based dynamics is always possible at the stationary distribution. We use a case study of colloidal aggregation to demonstrate that the method can reduce the state space exponentially with respect to the standard, species-based description.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Petrov, Tatjana ; Ganguly, Arnab ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Model Decomposition and Stochastic Fragments
Sprache: Englisch
Publikationsjahr: 30 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 20 Juni 2012
Ort der Erstveröffentlichung: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electronic Notes in Theoretical Computer Science
Jahrgang/Volume einer Zeitschrift: 284
DOI: 10.26083/tuprints-00026720
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26720
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this paper, we discuss a method for decomposition, abstraction and reconstruction of the stochastic semantics of rule-based systems with conserved number of agents. Abstraction is induced by counting fragments instead of the species, which are the standard entities of information in molecular signaling. The rule-set can be decomposed to smaller rule-sets, so that the fragment-based dynamics of the whole rule-set is exactly a composition of species-based dynamics of smaller rule-sets. The reconstruction of the transient species-based dynamics is possible for certain initial distributions. We show that, if all the rules in a rule set are reversible, the reconstruction of the species-based dynamics is always possible at the stationary distribution. We use a case study of colloidal aggregation to demonstrate that the method can reduce the state space exponentially with respect to the standard, species-based description.

Freie Schlagworte: cell signaling, continuous-time Markov chain, lumpability
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-267207
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Hinterlegungsdatum: 30 Apr 2024 09:12
Letzte Änderung: 13 Mai 2024 09:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen