TU Darmstadt / ULB / TUbiblio

Combining Model Reductions

Camporesi, Ferdinanda ; Feret, Jérôme ; Koeppl, Heinz ; Petrov, Tatjana (2024)
Combining Model Reductions.
In: Electronic Notes in Theoretical Computer Science, 2010, 265
doi: 10.26083/tuprints-00026719
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Molecular biological models usually suffer from a large combinatorial explosion. Indeed, proteins form complexes and modify each others, which leads to the formation of a huge number of distinct chemical species (i.e. non-isomorphic connected components of proteins). Thus we cannot generate explicitly the quantitative semantics of these models, and even less compute their properties. Model reduction aims at reducing this complexity by providing another grain of observation. In this paper, we propose two unifying frameworks for combining model reductions: we propose a symmetric product operator for combining model reductions for stochastic semantics and we show how to abstract further existing reduced differential systems by the means of linear projections. We apply both frameworks so as to abstract further existing reduced quantitative semantics of the models that are written in Kappa, by taking into account symmetries among binding sites in proteins.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Camporesi, Ferdinanda ; Feret, Jérôme ; Koeppl, Heinz ; Petrov, Tatjana
Art des Eintrags: Zweitveröffentlichung
Titel: Combining Model Reductions
Sprache: Englisch
Publikationsjahr: 30 April 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2010
Ort der Erstveröffentlichung: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electronic Notes in Theoretical Computer Science
Jahrgang/Volume einer Zeitschrift: 265
DOI: 10.26083/tuprints-00026719
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26719
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Molecular biological models usually suffer from a large combinatorial explosion. Indeed, proteins form complexes and modify each others, which leads to the formation of a huge number of distinct chemical species (i.e. non-isomorphic connected components of proteins). Thus we cannot generate explicitly the quantitative semantics of these models, and even less compute their properties. Model reduction aims at reducing this complexity by providing another grain of observation. In this paper, we propose two unifying frameworks for combining model reductions: we propose a symmetric product operator for combining model reductions for stochastic semantics and we show how to abstract further existing reduced differential systems by the means of linear projections. We apply both frameworks so as to abstract further existing reduced quantitative semantics of the models that are written in Kappa, by taking into account symmetries among binding sites in proteins.

Freie Schlagworte: rules-based modeling; model reduction; abstract interpretation; symmetries
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-267194
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Hinterlegungsdatum: 30 Apr 2024 09:11
Letzte Änderung: 13 Mai 2024 09:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen