Elasmi, Mehdi ; Erath, Christoph ; Kurz, Stefan (2024)
Non-symmetric isogeometric FEM-BEM couplings.
In: Advances in Computational Mathematics, 2021, 47 (5)
doi: 10.26083/tuprints-00023483
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting of two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide a priori error estimates. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Elasmi, Mehdi ; Erath, Christoph ; Kurz, Stefan |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Non-symmetric isogeometric FEM-BEM couplings |
Sprache: | Englisch |
Publikationsjahr: | 30 April 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Ort der Erstveröffentlichung: | Dordrecht |
Verlag: | Springer Science |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advances in Computational Mathematics |
Jahrgang/Volume einer Zeitschrift: | 47 |
(Heft-)Nummer: | 5 |
DOI: | 10.26083/tuprints-00023483 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23483 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting of two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide a priori error estimates. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results. |
Freie Schlagworte: | Finite element method, Boundary element method, Non-symmetric coupling, Isogeometric analysis, Non-linear operators, Laplacian interface problem, Boundary value problems, Multiple domains, Well-posedness, a priori estimate, Super-convergence, Electromagnetics, Electric machines |
ID-Nummer: | Artikel-ID: 61 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-234830 |
Zusätzliche Informationen: | Mathematics Subject Classification (2010): 65N12 · 65N30 · 65N38 · 78M10 · 78M15 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder |
Hinterlegungsdatum: | 30 Apr 2024 12:42 |
Letzte Änderung: | 08 Mai 2024 11:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Non-symmetric isogeometric FEM-BEM couplings. (deposited 30 Apr 2024 12:42) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |